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     Turbulent conic lab vortices scale to wide ranges of violent natural actions   

2.  3D GYRE FORCES CONTROL TORNADOES, SUPERCELL MESOSPHERES, CYCLONE EYEWALLS  
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     SUMMARY 
 
          Single vortices and symmetric pairs of both fully immersed, sphericly complete conic gyres and surface half-

vortices in water are driven centrally by 30 and 20 degree cones to high turbulence for measuring single gyre forces 

and two gyre mutual forces in 3 dimensions at near to far zone separations on scales of gyre turbulence diameters.  

The central conic drives are similar to the central heat and Coriolis-effect engines driving tornados, hurricanes, and 

storm supercell vorticity.  Suitably immersed, each directly driven vortex has the entire spheric, or separately 

hemispheric, conic spiral and toroidal flow anatomy of water particle velocity from the first paper of this series.  In 

surface hemigyres, radial forces between a pair of vortices with initially vertical axes are measured by small angle 

deflections of calibrated motor-mount pendulums, which are about two meters in length.  Farther off vertical, each 

single gyre shows an axial force, or point thrust (PT), like that of a descending tornado.  PT-corrected attractive and 

repulsive radial forces to 200 grams are measured between pairs of base-driven or point-driven cones, in same hand 

or opposite hand rotations, at increments of surface-symmetric axial angles to 150 degrees between axes of surface 

(lower hemispheric) gyres.  Right angle gear drive units are also used, with rotary collars at mid-pendulum, to obtain 

PT/crawl-corrected radial/perpendicular forces to 300 grams, up to 180 degrees relative axial angles, on symmetric 

horizontally driven conic pairs of immersed, complete spherically developed conic vortices.  Use of two 2-to-1 gears 

enables optically measured angular drive rates at 16:1 gear ratios of X/4, X/2, 1X, 2X, and 4X (within motor loading 

limits.)  At 2X gear ratio, water viscosity is varied by factors of 1/2 and 2 (4:1 ratio) with small density changes.  

Drive power and vortex energy content are recorded.  More limited trials sample asymmetries of relative axial 

angles and cone size, also surface roughness.  Force/energy equations are derived for the symmetric experimental 

conditions employed.  Weather vortices correlate with these lab vortex forces/anatomies, e.g.:  Conic PT can push 

tornado funnel hemigyres to the surface from mid-level cyclonic flows, against up-drafts.  In clear mesosphere, 

spheric gyre spiral waves may couple supercell vorticity to airglow gravity waves and pump ionic air down for 

sprites/blue jets.  Fast moving hurricane eyewalls are distorted by offset of mesopheric downwash in the upper 

hemisphere.  Gyre forces reverse unstably with decreasing separation of gyre pairs.  Field & lab sequels are implied 

for science, forecasts, and safety of air/land/sea navigation.   
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                 1.  INTRODUCTION 

                               (a)  Objective, general background, and systematic approach  

  This second note of a series provides the current data in a new approach to empirical 

vortex forces and their correlations with many energetic weather effects from the surface to the 

mesosphere.  These research notes originated from lab experiments in water with conic vortices 

which are axially driven by solid cones to sufficiently high levels of rotational turbulence that 

both the anatomy of the velocities of water particles in the primary and secondary flows of single 

turbulent gyres (Howard note one, submitted for review), and also the forces developed by these 

turbulent single gyres and dual gyres (reported herein), could be readily observed and measured.   

   The experiments of this series of notes were initially intended as preliminary trials (in 

connection with other on-going research in electronic vortex currents) that might lead to a more 

precise and narrowly focused experiment elsewhere.  However, the initial exploratory data show 

significant immediate correlations with mechanical force interactions of the strongest types of 

weather vortices, and add at once to the scant empirical data on forces involving secondary flows 

in turbulent conic gyres.  The rarity of such data stands in contrast with the large body of 

literature on vortex experiments that are not as directly relatable to violent weather, such as 

laminar surface gyres, two dimensional gyres without secondary flows, isolated cylindric or 
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toroidal gyres, etc. 

  Vigorous weather vortices are generally conicly tapered, short in axial length, turbulent in 

flow structures (often with spiral waves), and concentricly driven by distributed heat release 

engines in a viscous medium under surrounding external pressures with Coriolis rotational 

effects of prior and added momentum.  These factors energize the typical conic rotating form of 

net lower level flow inward, upward, and outward again in the cloud tops, with generalized signs 

of an opposite upper level subsidence or down flow in clear atmosphere above the clouds (e.g., 

Fig. 3, van Delden, 2003; and Fig. 8, Hoskins et al., 1985).  Such overall weather anatomy of 

mechanical flow is most similar to the turbulent laboratory vortices of the first note on the 3D 

water particle velocities of centrally driven, sphericly complete, immersed conic gyres with 

secondary (and tertiary) flow structures in distinctively different upper and lower hemispheres, 

as well as of separably matching lower hemispheric surface gyres (Figs. 3 and 2, Howard 2006) 

in which the base of the drive cone is submerged to about one diameter in depth. 

  The basic force experiments herein (Fig. 1b, simplified from Fig. 2, Howard 2006) are 

driven by the same 30 degree (whole angle), right circular cones and motors.  The velocity-

tracking particles and video camera of the first paper are replaced by twin force-measuring 

pendulums, which mount pairs of cones and drive motors.  As before, this provides, within the 

primary flow body of each gyre, a set of known angular and peripheral velocities on a known and 

simple conic boundary layer surface of viscous rotational flow, on which forces can be measured 

in summed resultant.  In the majority of these force experiments, two identical drive cones and 

symmetricly balanced variables of driving the gyres were chosen for most direct analysis of 

vortex forces over a wide range of variables, including one variation of the cone size and angle.   

  The principal emphasis of this note is first on derivation of empirical equations for 

measured vortex forces and their scaling characteristics.  These equations and data then enable 
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quantitative scaling of large mechanical effects in violent weather formations which are not well 

understood, and also define further field and lab research tests for improved forecasts of weather 

damage, and safety of air and sea navigation.  (This systematics is directly extendable to 

tornadoes/waterspouts in vortex pairs with storm cells or rain bands of tropical cyclones, to 

unstable eyes of such cyclones, to destructive downbursts in open eyewalls, to microbursts near 

airports or sealanes, and to clear air turbulence and mesospheric sprites near storm supercells.) 

 

   (b)  Outline of this report 

 The force-measuring pendulums are described in section 2.  Section 3 shows the origin in 

hemisphere flows of conic vortex forces, as scaled for two cone sizes in deriving an equation for 

the readily observed gyre diameter (GD) of high centrifugal turbulence in spiral wave planforms.  

In section 4, wattages of the gyre driving motors yield estimates of energy stored in and 

transmitted by GD scaled volumes of rotating vortical fluids.  Section 5 derives an equation for 

the point thrust (PT) force of a conic vortex and models PT data by GD scales.  Sections 2-5 

apply to all other data. 

 Section 6 correlates some force couplings of single experimental vortices with large scale 

weather.  In subsection 6(a), the axial PT force of the lower hemi-vortex in the lab is correlated 

in GD scale with that of a specific tornado funnel gyre in its descent to the earth's surface against 

the convective updraft of a large storm cell.  In subsection 6(b), outward acceleration by the 

centrifugal GD spiral wave disk of input fluid, which flows down to the disk through the upper 

hemisphere of a fully immersed lab vortex, is correlated:  (1) With predicted continuous 

downflow of ionized (ionospheric) air above the cyclonic vorticity of storm supercells; (2) with 

the subsequent enabling above a specific supercell of mesospheric electric discharges called 

sprites, etc.; and (3) with predicted GD disk acceleration of the downflowing air spirally outward 
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and up in the night air glow of centrifugal mesospheric gravity waves from the same supercell 

with associated forceful flight turbulence above the supercell.   

 In section 7 radial mutual forces in symmetricly driven pairs of surface and immersed 

vortices, are measured, corrected for single gyre forces, reduced to GD scaled equations, and 

interpreted in graphs for implications on predictably hazardous, unstable reversals of direction of 

mutual force between weather vortices.  Section 8 has limited data on the three additional sets of 

mutual and single gyre forces which act perpendicularly to the radial mutual force, including 

forces toward or against coaxial alignment of gyre axes, with implications for initiation and 

irregular tracks of tornadoes.  Section 9 has samples of force data for dual gyres in asymmetric 

geometries, and a joint correlation with sections 7 and 6b to irregularities of the eyewalls of 

tropical cyclones.  Section 10 summarizes the principal conclusions, correlations of violent 

weather with lab data, and implications found, including needs for further lab and field research 

related to weather forecasting, damage potential, safety of flight, and surface navigation.     

 

 

   2. DESCRIPTION OF ADJUSTABLE, FORCE-MEASURING PENDULUMS AND THEIR USE  

 

   The swinging axles of the two pendulums were 10 mm (3/8 inch) bolts, which were 

adjustably blocked in sliding positions of variable separation along an overhead cylindric bar for  

the sole bearing point of each axle.  Each pendulum was made of two flat 5 cm metal bars with 

position scales.  In the middle of the 2 meter length of each pendulum from axle to test item there 

was a freely adjustable sliding length and angle joint.  At the foot of each pendulum there was a 

two-position, parallel or perpendicular mounting of direct drive to a 20 or 30 degree (whole 

angle) cone body by a reversible, 10 mm (3/8 inch) electric drill turning extendable 6 mm or 10 
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mm shafts.  Resultant axial angles of each drive shaft, over a range of zero to 75 degrees from 

vertical, were measured to about 1 degree accuracy with gravity angle indicators before and after 

surface-penetrating runs for surface vortices.  Voltages were checked and amperages were 

measured under the various loads, while optical rpm instruments were held near the chucks of 

the drills.  (Power factors were not measured.)  Pendulum deflections up to 3 degrees due to 

sums of mutual radial force FM and any components of axial PT were observed along the 

horizontal radial reference line of separation between the centroids of volume (CV) of cones.  

 In most of the experiments with surface vortices, low friction guides along both sides of 

the pendulums eliminated significant lateral or twisting deflections.  When lateral out-of-vertical-

plane forces were also observed, any twisting force deflections were minimized in significance 

by the axle positioning structure, and their moments were not observed.  The out-of-vertical-

plane forces with surface gyres are the lateral mutual force FL perpendicular to FM and to the 

reference plane of symmetry of the cone axes, and a side "crawl" force which arises from each 

cone gyre whenever its axis is not perpendicular to the water surface, even when fully immersed.  

For immersed vortex experiments, pendulum changes (described next) rotate the reference plane 

of the two cone axes by 90 degrees around the horizontal line of FM to the horizontal plane, 

disclosing the mutual force FP which is perpendicular to both FM and FL.  The primary forces FM 

and PT are each correctable for components of any other forces (the rest of which are discussed 

in section 8.)   

 For fully immersed gyres on horizontal axes, right angle gear trains were used below 

continuously adjustable rotary collars at mid-length of the pendulums.  Combinations of 1-to-1 

and 2-to-1 reversible gears, in sets of two for each drive train, provided drive gear ratios of X/4, 

X/2, 1X, 2X and 4X (times) the motor rotation rates under the various loads.  The motor was 

overloaded at 4X gear ratio, with much reduced rotation rate and overheating.   
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  On each readjustment pendulums were calibrated with weights and a low friction pulley 

for radial and lateral forces up to 240 grams force at 10 cm deflection, with spot calibrations to 

400 grams, at an estimated average accuracy of 1.0 gram.  However, the limit on measurement 

accuracy is that of estimating the average of constantly varying changes in the reading due to 

gyre turbulence.  Five percent is rare.  Ten percent is typical in midrange, but that is estimated to 

increase to fifteen percent or more at the extremes of the lower and highest cone rotation rates 

(with the least force or most intense turbulence.)  When large attractions force cones or parts of 

pendulums into firm contact, the force required to pull them apart can be fifty percent or more 

above the plotted contact deflection data.  (Adaptation of these spinning systems to the typical art 

of rigid strain-gauge force balances for static bodies was beyond the scope of these experiments.)   

 

 

        Section 3.  FLOW ANATOMY AND EQUATION FOR GYRE DIAMETER SCALING REFERENCE  

 

 The principal feature of a strongly driven surface vortex is the central gyre diameter (GD) 

of apparently chaotic turbulence.  The turbulence is actually organized usually in about six quasi-

radial, almost standing waves (Fig. 1b, simplified from Fig. 2, Howard, 2006) which form a 

thick, subplanar disk of net centrifugal flow through complex rotations of the water parcels.  The 

central inner ends of the spinning cores of the waves are conformally nested together in spirally 

trailing curves (sketched within the water of the entire wave bodies, not shown, between the 

wave cores.)  Each spiral wave is itself a small vortex, fluctuating cyclicly with the energy of 

vortical wavelets around it in descending scale (not unlike many fractals.)  The spiral wave arms 

of the main vortex subside from turbulence to smoothly spreading outward waves over a very 

short distance at the GD diameter.  The diameter varies unevenly with each wave, while the 
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whole planform rotates around the drive axis at a very low rate compared to the drive cone. 

  With individually trackable flow visualization particles, the GD disk appears not to 

change observably if the surface hemivortex, driven at a cone base depth of one base diameter 

(Fig. 1b), is further submerged, as a complete spheric vortex with viscous flow above the GD 

(Figs. 2 and 3, Howard 2006), and turned on its side with the drive axis horizontal.  This stable 

GD disk is such a significant secondary part of the generation of gyre forces by transfer of 

momentum outward from the primary internal flows of the vortex along the surfaces of the drive 

cone (as summarized next) that the GD becomes the scaling reference for these forces.    

 There are distinctly different flow structures in the nominally upper and lower submerged 

hemispheres of the spherical flow anatomy around the GD disk (Figs. 2and 3, Howard 2006).  

The conic source of rotational energy is well within the lower hemisphere (Fig. 1b).  The 

centrifugal primary flow off the flat base of the rapidly rotating drive cone couples viscously into 

the undersides of the outwardly expanding conelets of the secondary spiral wave arms, until each 

of these conelets is cylindricly accelerated to the maximum velocity and diameter of its 

individual internal core of cylindric rotation.  This maximum occurs as the water parcels of the 

wave flow centrifugally outward in a corkscrew motion past the GD boundary (at about 2.56 

times the diameter of the 30 degree drive cone with 1X direct drive.)  At the GD, increasing 

losses of momentum to greater volumes of surrounding fluid reverse wave growth to a decline of 

size and velocities in each wave, so that its front turns in an increasing trail angle through 45 

degrees from the local radius, and its turbulence is damped out in a short distance along the front.  

 The growth of the spiral waves on momentum from the centrifugal boundary layer of the 

drive cone base is also aided out to the GD by another, more massive, and almost laminar, 

primary flow, which is accelerated viscously up the sides of the drive cone to spiral outward 

centrifugally from the perimeter of the cone.  With direct drive of the 30 degree cones, the line in 
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vertical cross-section between the two interacting outflows off the base and the sides of the drive 

cone is 14 degrees above the plane of the cone base (Fig. 1b).  Thus, there is an upwardly 

accelerated final velocity component along the 14 degree line from the primary inflow around 

the point of the cone. The downward momentum of base inflow (whether with water coming in 

from the sides above the spiral wave disk in surface gyres or axially in immersed gyres) is also 

reversed in its axial direction (Fig.3, Howard 2006) and accelerated in the broad cone of the 

turbulent spiral waves with an upward component above the 14 degree section line to as much as 

30 degrees above the base plane.  This also tends to maintain a fluid pressure head above the 

center of the disk and the cone base, while the greater rate of removal of fluid around the cone 

point tends to reduce the pressure below.  In result, there is a net reaction thrust as with a rocket 

motor along the axis of the cone in the direction of the cone point.  This reaction thrust is called 

point thrust (PT) herein, and is defined numericly in equation (2) of section 5.   

 In addition to transfers of disk momentum to tertiary conic eddies that appear to arise 

largely from the 45 degree bends of the spiral waves near the GD, there are toroidal flows that 

contribute to vortical force effects, with power data in section 4.  Through the GD outward to 

about twice the GD radius (Fig. 3, Howard 2006), much of the spirally out-flowing momentum 

around the spiral wave disk is concentricly coupled to two large, dissimilar, secondary toroidal 

flow rings centered around the primary axis in their respective upper and lower (nominal) 

hemispheres.  When undisturbed, these two toroids, sketched herein as outlines (Fig. 4b), act in 

part as momentum storage cells.  On their toroidal flow returns toward the primary axis during 

their corkscrew particle movement around their rings, the two toroids then feed back some of the 

flow (and the contained eddies) axially into the primary flows along the cone surfaces.  Part of 

the toroidal momentum is viscously transferred outward almost sphericly into the surrounding 

fluid, supplementing the unstored momentum transferred outward and upward by the spiral wave 
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disk.  In the upper hemisphere, in addition to pulsing variation of toroidal flow in the vicinity of 

each spiral wave, there is a more rapidly impulsive fluctuation of flow observed in and around 

the upper toroid as a vibratory motion of neutrally buoyant flow visualization particles driven by 

the turbulence of the spiral waves (Howard 2006).  This vibratory component of momentum 

transfer outward propagates as directionally rotating or polarized pressure waves or sound-like 

waves which contribute to forces in the upper hemisphere.  The particular flow structures which 

mediate specific force interactions between two conic vortices will be dependent on both the 

global relative attitudes (Fig. 4b) and the separations of the gyres on the GD scale, from near 

zone contact of the drive cones with flexible distortions of the flow structures to far zone 

separations with relatively low distortion of flow. 

 Whether the cone and the entire gyre are fully immersed, or the cone base is immersed 

one base diameter for a surface gyre, the GD dimension in centimeters (and the proportional 

thickness of the turbulent spiral planform) is primarily a function, equation (1), of the size and 

shape of the cone, its rotation rate, and the viscosity and density of the fluid.  Accordingly, the 

plots versus cone peripheral velocity of GD data for surface and immersed gyres (Fig. 1a) fall on 

a single set of curves for different cone sizes.  Two types of right circular cones were used in the 

experiments that establish this.  One type of cone (with a set of four) was of maple wood, lightly 

sanded to remove most lathe marks on the sides, and not polished.  These four cones were of 30 

degrees nominal whole angle within about 1%, with 7.9375 ±0.05 cm base diameter, and were 

truncated at 12.38 cm length for a cap nut fastening of the 6mm axial drive shaft.  The other type 

of cone (with a set of two) was of polished brass threaded in the base for a 10mm shaft, with 20 

degrees whole angle, 3.175 ±0.01 cm base diameter, and 8.7 cm length to a slightly rounded tip.  

(Subsequent attempts to attach grit, or other roughnesses, to the polished brass, equivalent to the 

roughness of the wood, did not have an effect on the GD, though there was a detectable force 
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effect noted later.)  The respective base areas AB were 49.48 cm  and 7.917 cm .  The respective 

side areas A

B

2 2

S of the cones were 195.36 cm  and 43.87 cm .  When directly driven (at 1X ratio) in 

city tap water at 20°C, the respective base peripheral or tangential velocities V

2 2

P were 872.9 cm 

s  and 356.5 cm s .  At that standard temperature the approximate fluid density ρ  (from 

handbook tables for distilled water) is 0.998 gm cc , and the viscosity η is 1.005 cp.   

−1 −1

−1

 In the larger tub used for full immersion of gyres with horizontal axes, water temperature 

variations to 18.75 and 16.2°C with changes of nominal density up to 0.999 gm cc−1 and of 

viscosity up to 1.11 cp had no observable effect at 2 X drive gear ratio on GD or forces with their 

typical uncertainties of 6 to 10% (though the 2 X peripheral velocity of the 30 degree cone did 

change perceptibly by about 0.8%, shown in doubled velocity ticks on Fig. 1a and elsewhere.)  

Then water at 49°C (which was re-measured for every run) provided briefly a nominally halved 

viscosity of 0.56 cp with density of 0.989 gm cc−1.  A longer lasting change with 20% by weight 

solution of sucrose at 18°C doubled the nominal reference viscosity to 2.08 cp with a density of 

1.085 gm cc−1.  At the 2X drive gear ratio, the 30 degree cone's GD and peripheral velocity did 

vary significantly (Fig. 1a) for these changes.  (For ready tracking of such variations, there are 

below the peripheral velocity scale of the figure, separate tick mark scales and brief identifiers 

for the test conditions for each cone size at specific velocities.)  

 In the larger tub with two right angle drive gears (to provide horizontal axes and full 

immersion of the gyres) the frictional load of the double-geared train at 1X (2 gear) ratio reduced 

the average peripheral velocity VP of the 30 degree cone for immersed gyres to 789.35 cm s−1 (in 

near standard water at 19°C.)  This velocity [rather than the 1X direct-drive average velocity of 

872.9 cm s−1 in surface gyres (with separate 1X tick marks on the scales for both cone sizes)] sets 

the reference velocity for comparisons with data (Fig 1a and elsewhere) obtained with the X/4, 

X/2, 2X, and 4X gear ratios, which use two gears in immersed gyres.  [A number of horizontal 
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runs at 1X (1gear) with a single right angle 1 to 1 gear and VP of 832.6 cm s−1 obtained data only 

in mutual forces.  There were also a few trial runs at 2X and X/2 (1 gear.)]  Note that within the 

experimental uncertainty the dimensions of the GD disk (Fig. 1a herein and Figs. 1a to c, and 2, 

Howard 2006) were not observed to change with the velocity variations over the range of 1X 

conditions.  The 4X series was run in near standard 17.5°C water, which was freshly refilled 

after removing traces of sucrose solution used at 2X.  The motors were so heavily loaded by the 

4X gear drive of the 30 degree wood cones that the peripheral or tangential velocity was only 

increased by about 50% (over the 1X gear ratio) to 1232.0 cm s−1.  The comparable 2X velocity 

was similarly limited to 1072.4 cm s−1.  The drive train with the two right angle gears also 

reduced the 20 degree brass cone's peripheral velocity at 1X to 328.2 cm s−1, and limited the 2X 

case to 570.98 and the 4X to 977.77 cm s−1.  (With the smaller cone there was much less 

indication of overloading the motor.) 

 Within these ranges of variation of test conditions (which will also be cited for force 

measurements where applicable), the GD in centimeters varied (Fig. 1a) as: 

                                                               0.6667    
ρ          ⎯     

  GD  =  d [ 1  +  e ( ⎯ )        c  
 V A√V     ]  ,     (1)            

                                       η                                       

 

where dc is the cone base diameter in cm, V = Vp /1000 with the peripheral velocity of the base 

Vp measured in cm s−1, the coefficient e is the base of natural logarithms, and A = (2 Ab + As)/100 

with the two component areas in cm2.  Note that V has its own square root in its exponent.   Also 

in that exponent, the area of the base in cm2 is given twice the weight of the area of the sides 

because of the higher turbulence and peak velocity in the spiral wave flow off the base which is 

the principal turbulent determinant of GD.  [However, in scaling up usefully from the cone sizes 

in the experiment (for estimates on large weather gyres), the A in the exponent may take the GD 

calculation off scale, unless:  (a.) The units of length measure for the base diameter of the 



  13 
 

 
 

hypothetical weather cone (and the GD) are chosen such that it is between 1 and 10 units, though 

they may be unusual units.  (b.) The units of length to be squared for the areas of the sides and 

base of the weather scale cone are the same units.  (c.) The peripheral velocity of the base of the 

weather cone remains in cm s−1 units.] 

 The last term of the equation (1), for the additional diameter of the GD above the 

diameter of the drive cone, contains elements of the Reynolds number, but employs those 

elements quite differently.  This empirical usage describes a doubled variation in radius with a 

proportional increase in the thickness of the boundary layer attached to the base of the drive 

cone, as shown in the 30 degree slope over half the GD of Fig. 1b (Figs. l and 2, Howard 2006).  

This implies an empirical scaling relation to the thickness of turbulently accelerated boundary 

layers in this geometry.  (Another cooperative relation appears in the next section.) 

 In Figure 1a the excessive deviation between the measured and computed values for the 

30 degree wood cone in the 2X low viscosity (hot water) case is attributed to the very rapid 

evaporative and conductive cooling rate of the water, much increased by the local turbulence 

during measurement of the GD.  (Accurate local temperature and viscosity requires a short time 

constant probe always within the GD.)  The much higher percentage deviation on the 20 degree 

brass cone at 4X drive gear ratio was probably caused by an unexpectedly large effect from the 

10 mm drive shaft in the small cone at this high rate.  (A similar effect may be present in the 4X 

force data on the 20 degree cone.)  Otherwise, the equation (1) approximates the limited data. 

 These data show clearly that at 2 times higher viscosity (and very small change in 

density) with the 20% by weight sucrose solution the GD (Fig.1a) is much smaller than it is with 

the tap water.  Also, since there is less material mass in the smaller volume being driven to 

turbulence, and since that smaller mass is coupling momentum losses outward over a smaller 

area, the cone peripheral velocity is higher than it is with the lower viscosity of the tap water.  In 



  14 
 

 
 

addition, it will be seen in the next section that the current drawn by the motor, the driving power 

absorbed, is significantly less with the higher viscosity fluid than with the tap water.   

 Exactly the reversed kinds of change from the normal condition with tap water occur, 

with both the GD and the cone rotational velocity, when the viscosity of the experimental fluid is 

reduced by approximately half in the heated water at ≤49°C (Fig. 1a) compared to the tap water.  

The GD and the spheric gyre volume it defines both expand, and the cone rotational velocity 

decreases due to increased loading.  These effects are approximated, as graphed in the figure, by 

the numerical relations of the equation (1).  Also, it will be seen in the next section that the drive 

current, the loading on the drive motor, increases distinctly with the reduction of viscosity by 

about half.  This effect from expansion of the gyre volume and energy content (and dispersal) in 

inverse ratio to a 2/3 power of the viscosity is also substantiated by the mean trends and peaks of 

the repulsive mutual forces for these changes in viscosity (Figs. 7i, j, and k).  The attractive 

forces are less definite and may indicate an opposing trend at small separations between gyres. 

 

 

  Section 4.  ELECTRIC DRIVING POWER AND VORTEX ENERGY
  

 

 Currents drawn by the electric drive motors for the 30 and 20 degree cones were 

measured for each significant change in the turbulent experimental conditions.  Data were taken 

with both motors running, first dry with only air loads, and then wet under the experimental 

loads with gyres far apart and having little mutual force.  Voltages were observed not to vary 

from the no-load value after the starting surge.  The errors in these measurements are estimated 

at 2% to 3%, but the errors in subsequent power and energy estimates are not well resolved.  The 

power consumed in maintaining turbulent gyres at constant size is apparently the difference in 
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watts between the air load and wet load data.  These differences plotted as gyre driving power 

(Fig. 2) under the various conditions of section 3 are probably upper limits.  No positive 

correction was estimated for gear train losses at the higher angular rates with the air loads, and 

no negative correction was made for (probably larger) frictional loss in the drive train from the 

much increased loads of the gyres.  Since these errors may be very large in the 4X drive gear 

ratio with the 30 degree cones, those data are only indicated well beyond the top of the figure. 

 A separate attempt was made to measure power difference due to mutual force between 

immersed gyres close together at 1X (1 gear) drive ratio with 30 degree cones.  The best 

difference measurement obtained with the pendulums was something less than 6.6 watts due to 

maximum attractive force in the vicinity of 300 grams (compared to about 25 watts gyre drive 

power without mutual force, not plotted.)  This power difference included unknown frictional 

losses due to unsteady contact between the two 30 degree drive cones.  (Again, recorded rigid 

force balance instruments, beyond the scope of the experiments, would be much preferable.)   

 After the starting surge to bring the drive motor up to speed, average currents during the 

build-up of the turbulent gyre were estimated to be very similar to the running currents after 

development of the gyre to full size and turbulence.  Averaged stopwatch estimates were then 

made of the length of time in which rotational energy is built up in the gyre while developing the 

gyre to full size.  This provides an estimated approximation of the watt-seconds or joules of 

energy stored in the turbulent rotation of the individual gyre under various experimental 

conditions (Fig. 2).  The data for 1X (direct) gear are from vertical surface gyres with the base at 

the standard depth of one base diameter, and all others are from fully immersed gyres.  The two 

groups of data are generally consistent for 20 degree cones.  However, with the larger gyres from 

30 degree cones, the length of time required to establish adequate water inflow from the small 

hydrostatic pressure head above the centrifugal spiral disk in the surface gyre, can apparently be 
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a significant delay that makes this 1X (direct) data point inconsistent (and invalid.)  

 The trends of the combined estimates and measurements (Fig. 2) are similar to the GD 

data curve (Fig. 1a).  At 2X gear ratio, the variations of watts and joules with viscosity are like 

those of the GD curve in the negative slope of the crossing line with viscosity (due to the inverse 

relation between gyre volume and viscosity of the fluid.  A similar effect on mutual force 

appears in later sections.  Note again, also, that the low viscosity measurements in heated water 

were made at a lower than intended temperature, and the measurements are low.)  

 The rotational energy and angular momentum in the immersed gyre are stored in two 

volumes, of which one is the nearly spherical region of strong primary and secondary flow at 

about the GD diameter.  The included smaller volume is that of the turbulence itself in the thick 

subplanar disk, or wide and shallow cone, of the spiral wave planform within the GD (Fig. 1b).  

Over the range of these experiments, this volume is estimated to have a turbulently variable 

thickness proportional to its diameter, so that both volumes scale with the cube of GD.   

 A convenient scaling value to compare proportional volumes of gyres in the 30 degree 

cone experiments with the power/energy data is the ratio of the computed diameter on the GD 

smoothing curve (Fig. 1a) to the diameter of the 30 degree cone at the centroid of the total 

surface area of the cone.  This diameter dccs is approximately 6.3 cm.  The cube of that variable 

ratio of the two diameters computed for the principal line of the GD curve (Fig. 1a) is plotted in a 

dotted line (Fig. 2) as a volume ratio for bodies of the variable GD diameter to similar bodies of 

the fixed dccs diameter.  This computed volume ratio scales in a very close match with the power 

and energy data, showing that both data are indeed essentially proportional to gyre volumes.   

 This proportional matching of turbulent volume ratios and power/energy curves implies 

that there is a threshold of relative kinetic energy content per unit volume of fluid near a shear 

interface, beyond which threshold value the volume of turbulence expands until the threshold 
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level is again reached and is just maintained in the relevant volume on average.  Take the case of 

the immersed spheric conic gyres in near standard water at the 1X (2 gear) drive ratio for which 

there are full data (Fig. 1a).  If the volume of storage in all high energy flow is that of the sphere 

of the observed 20.3 cm GD diameter, or 4.2 × 103 cc, with the turbulent disk just above the 

threshold of turbulence on average and the rest of the sphere just below the threshold on average, 

then the approximately measured energy content (Fig. 2) of about 12 joules implies a TBL 

threshold in similar geometry of order about 3 × 10−3 joules cc−1 or joules gm−1 in lab water.  

This implication may scale to other fully turbulent fluids with the 2/3 power of the density to 

viscosity (in cp) ratio as in equation (1) and in the correction factor of later equation (17). 

 Since the thickness of the GD turbulent disk in the scaled schematic images (Fig.1b) 

(Figs. 2 and 3, Howard 2006) applicable to the full range of 1X drives (Fig. 1a) varies from 

about 4 cm to about 6 cm with a mean of 5 cm, it contains about 3/8 of the volume and the 

energy of the nominal high energy sphere or about 4.5 joules of energy.   The sphere stores about 

12 joules, but transfers 16 joules/second (Fig. 2 watts) from the disk to the surrounding fluid.   

 Since the turbulent vibrational motion of the individual spiral waves, as noted in section 

3,  is clearly visible as repeated movement in the fluid above the disk, it is well below the 30 to 

40 cps of drive shaft rotation, which the eye could not see as separate movements.  Thus, these 

vibrations constitute a rotating field of acoustic pressure waves from the spiral disk as a tertiary 

effect within the ring of the base toroid.  Assuming a non-linear refractive interaction with other 

gyres, the vibrations would add a component to net mutual forces.  Such energetic effects would 

propagate in a laterally vibratory mode rather than at flow speeds in the medium.  The effect 

would appear over a wide cone in the medium above the base of the drive cone (and in reaction 

below) and would die out in the far field as the usual inverse square of the radial distance of 

separation.  The definite observation of this fluid vibration shows that a distinct fraction of the 



  18 
 

 
 

estimated 16 j s−1 of energy dissipated into the water medium from the entire sphere in this case 

should be measurable over a very low acoustic frequency band separable from motor drive noise 

in any future experiments.  Such a measurement may correlate with components of microseisms 

from intense cyclones and of mesospheric waves above convective weather supercells, as in 

section 6. 

 

 

  Section 5.  POINT THRUST (PT) FORCE DATA AND EQUATION 

 

 In section 3 it was pointed out that flow structures of each conic vortex contain two 

rocket-like ejections of fluid, with added momentum in the base direction, and a reactive point-

directed axial thrust force, PT.  Any component of this single gyre PT force in a dual gyre 

measurement must be subtracted from the measured force to obtain the interactive mutual force.  

 PT data from each gyre in these experiments are plotted (Fig. 3) against the peripheral 

velocities of the bases of the two types of drive cones for the various drive conditions.  For 1X 

directly driven surface gyres at various axial angles relative to the vertical, each measurement of 

the horizontal component of PT was divided by the sine of the angle to find the full axial vector, 

and these data were averaged.  Data from surface and immersed gyres are generally consistent, 

with midrange uncertainties well below 10%.  The more erratic immersed X/2 data for the 30 

degree cone resulted from trying a single 2-to-1 gear as well as a two-gear train.  The PT datum 

at 2X drive gear ratio for the sucrose solution with high viscosity was not clearly differentiated 

from the mean of the two values for small temperature differences near the standard viscosity, as 

the previous GD and power data were.  The hot measurement for low viscosity, on the other 

hand, definitely confirmed the mean negative slope of PT with viscosity. 
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 The empirical equation (2) derived to express the data in general form defines:  

                             sin θ             ρ   .25       0 s
  PT  = ⎯⎯⎯⎯  ( ⎯⎯)        V

                   A                             
p 

1.525  ⎯⎯⎯⎯⎯ ,    (2) 
      10 π              η           9.807×102                    
 
where θ is the whole cone angle, ρ and η are fluid density in gm cc−1 and viscosity in cp 

respectively, Vp is the peripheral velocity of the cone base in cm s−1, and As is the area of the 

sides of the cone in cm2.  While the area of the base is not included, the sine factor implies that 

the square root of the relative base area is effectively included, as a reduced weighting of the 

effect of the base area.  The sine factor also describes the vanishing of axial PT force for the 

ideal cylindric or zero angle limit of the small angle cone.  At the 180 degree whole cone angle 

in an immersed flat disk, the sine describes the zero axial force balance of the two sides of the 

disk.  The number 9.807×102 is the conversion factor from dynes force to grams force, which 

was more convenient in data measurements.  Again, the empirical equation for turbulent vortices 

contains equivalents of elements of the Reynolds number with unusual exponents. 

 The equation effectively shows that for the 20 degree cone to reach any selected axial PT 

force exhibited by the 30 degree cone, the peripheral velocity of the smaller cone must increase 

over the peripheral velocity of the larger cone by a factor of the 1.525th root of the ratio of the 

larger to the smaller sine times the similar ratio of the side areas.  To do that, the angular rate of 

the smaller cone would thus have to increase by more than the ratio of the cone diameters.  At 

those relative conditions the boundary layer attached to the side surface of the larger cone may 

represent an arbitrarily simplified approximate model at that surface of the tangential velocity 

field around the sides of the smaller cone at the scaled up rotational rate, provided that the ratio 

of the side surfaces, or volumes, or diameters, etc., stays within some reasonable limit, such as 

that the diameter of the larger cone base does not exceed the GD of the smaller cone at the 

increased angular rate.   

 This PT modeling implication between the two experimental cones can be checked by 
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data (Fig. 3).  The 20 degree cone at the measured 977.77 cm s−1 peripheral velocity shows 17.55 

gm PT from the equation (2) with the usual viscosity factor very close to 1.00.  Solving for Vp by 

reversing the equation in the same condition shows that the 30 degree cone would have 17.56 gm 

PT at 285 cm s−1.  The product of the ratios of sines and side areas for the 20 and 30 degree 

cones (with the 30 degree values in the numerator) resolves to 6.511, with a 1.525th root of 

3.4162.  This times 285 cm s−1 gives 973.6 cm s−1 required velocity for 17.56 gm PT of the 

smaller cone.  That velocity is low from the 977.77 cm s−1 value by 0.42%.  Using measured 

rather than calculated PT for this check of the modeling rule should not change the result 

significantly.  To check the stated range of modeling, the measured GD of the small cone at 

about 11 cm or the calculated GD at about 16 cm are not approached too closely by the base of 

the large cone at 7.9375 cm diameter.  It can be noted (Fig. 1a) that the GDs for the two cones 

with matched PTs are very nearly equal; the fluid volumes will also be similar.  Likewise, the 

smoothed and extended power and energy measures for the two cases (Fig. 2) are quite similar.  

Such modeling may be limited to cases in which:  The smaller cone is of a lesser cone angle and 

could be fitted entirely within the volume of the larger cone, with the cone angle ratio slightly 

larger than the square root of the base diameter ratio; the fluid density to viscosity ratio is fixed. 

 To summarize for impact on the sections which follow, the conditions analyzed for single 

gyres in sections 3, 4, and 5 include:  30 degree (whole angle) drive cones and smaller 20 degree 

cones; both fully immersed (sphericly complete) vortices and defined surface hemivortices; a 

number of angular spin rates over a range of drive gear ratios of 16 to 1; and three fluid 

viscosities with a range of 4 to 1.  The data in sections 3, 4, and 5 apply in the following sections 

to each trial vortex, whether surface or immersed, single or in a pair, in same or opposite sense 

rotation of a pair or in either hand alone, as well as over a range of separations of gyres, and over 

widely varied, relative axial angles within pairs of vortices.  (The range of some variables is 
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explored at only a few settings of others, in cross-sectional samples of the potential data field.) 

   

 

 Section 6.  WEATHER CELL CORRELATIONS WITH FORCES OF SINGLE CONIC VORTICES:           

           DESCENT OF TROPOSPHERIC TORNADOES.  ASCENT OF MESOSPHERIC SPRITES. 

 

  (a)    Vertical force on tornado vortices, two similar lab models    

 True experimental modeling of weather phenomena is essentially not feasible because of 

Coriolis effects, decreases of pressure and density with altitude, latent heat effects, temperature 

lapse rates, etc.  Yet, given that forces in a tornadic thunderstorm cell have set an intense 

mechanical vorticity in motion in a gaseously fluid medium, some mechanical similarities to a 

laboratory lower, or pointed cone, hemigyre in water (Howard, 2006) can be observed.  .  

 For instance, a series of very clear pictures with scale information have been published 

(Rasmussen et al., 2001) showing a tornado below a cloud base at about 2 km altitude.  The 

upper part of the funnel was measured photogrammetricly at 1.4 km wide.  The dust and debris 

at the ground were about 400 meters wide. This would indicate a blunted cone of clear air 

rotation of about 28 degrees whole angle around the cloudy core of the lower funnel.  It was 

stated that separately obtained doppler radar data at the time and location showed at about 4 km 

altitude a 43 m s−1 differential horizontal velocity from side to side in a tornado vortex 

circulation of about 1 km diameter.  At the same time and map location there was also a 46 m s−1 

differential velocity measure over a mesocyclone of 7 to 8 km diameter at some unstated altitude 

of not less than 4 km.  The entire lower circulation was evidently conic, and the 7 to 8 km 

diameter may represent a large circulating volume of precipitation reflectivity near a GD-like 

structure above the funnel.  The tip that touched the earth was clearly tornadic in reported ground 
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damage effects over about the same path width as the photographed dust cloud. 

 In a published paper (Ziegler et al., 2001), from the same Project VORTEX, it is noted 

that a tornado at another time and place appeared at the surface after a mesocyclone at 2 to 5 km 

altitude above ground developed downward.  This is similar to many eyewitness reports of the 

condensed funnels of tornadoes that appear to move downward from the clouds of intense storm 

cells.  Since cyclonic circulations in general are associated with upward net flows (Rasmussen et 

al., 2000; and Markowski et al., 2002), though downdrafts, horizontal vortices, and microbursts 

also occur in storm cell areas, the body of the intense vortical circulation of a tornado must 

typically propagate downward against an updraft around as well as within the body.  If the body 

of circulation is taken as a real physical body (very much in the same sense as the earlier 

modeling interchanges), it would be consistent with the finding of PT in lab data to consider that 

a tornado body developed aloft may be effectively thrust downward against the convection 

upflow by pressure reactions to the ejection of accelerated air upward as a usual mechanical 

event within a rapidly rotating conic body in a fluid medium, and equation (2) applies.  

 It is noted first that the flow in the lower sides of the hemigyre of the lab case was almost 

laminar (Howard 2006).  This is similar to the typical smooth appearance of the sides of the cited 

funnel image (Rasmussen et al., 2001) of a medium-sized tornado above the surface dust cloud.  

If the 43 m s−1 differential velocity measurement by doppler radar at about 1 km diameter is 

arbitrarily assigned to the photogrammetric measure of 1.4 km diameter as a 21.5 m s−1 rotary 

flow, and it is assumed that the angular momentum is conserved and maintained in expanded or 

compressed air parcels rather than being significantly coupled away to surrounding fluid over the 

flow period, then at the 0.705 km diameter base of a 20 degree cone (nearer the core of the 

tornado), and 2 km above ground at sea level (rather than the unknown ground level in Kansas), 

moist summer air particles of the same angular momentum would have a rotary velocity of 43 m 
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s−1.  (Air closer in at the 400 m diameter core would similarly project conserved angular 

momentum at 75 m s−1, which is high enough to do tornadic damage of the type observed.)  This 

estimated conservation of angular momentum is roughly consistent with the empirical scaling 

ratios described earlier in the lab data (outside the rigid body of the drive cone.)  

 Since data are available only on the static case after the tornado has already descended to 

the ground, it can only be assumed that whatever balance of forces exists in this static case would 

be similar to the balance further aloft if the tornado tip were just forcing its way down slowly 

through the cloud base.  Assuming that the PT equation (2) would not change its form over such 

a scale increase as that considered here, and arbitrarily taking the core circulation as a 20 degree 

conic body with a base peripheral velocity of 43 m s−1 at 2 km above the tip of the cone at sea 

level in moist summer air, this would yield a total estimated PT force of 1.2394×1010 gm 

available to push downward on a tornado body of that scale.  Assuming a flat plate drag 

coefficient of 2 for a worst case of flow interferences in the usual drag equation, over a circular 

projected frontal area in moist summer air at about 2 km above sea level, the tornado body might 

face an upward drag force of 3.5894×104 gm m−2 of frontal area from an updraft flow of 20 m 

s−1.  Such a drag force might strip away the toroidal flows, and the GD disk also might not be 

fully maintained, but might be bent upward in a narrower exhaust cone.  Assuming that any 

reaction thrust efficiency increases and losses would balance within a minor effect, the PT force 

estimate expressed on the putative cone base diameter of 0.705 km diameter would give the 

tornado funnel a downward thrust of 10.l9685×104 gm m−2 of projected area.  Thrust of that 

order of magnitude would be suitable for bringing such a tornado cone down to the earth's 

surface against the estimated drag.  In this scaled estimate the velocity of the updraft surrounding 

the tornado body at the base of the storm cloud could increase to 33.7 m s−1 before it would 

balance the down thrust of the tornado and force it to retreat aloft.   
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 Another feature of the laboratory gyre demonstrates PT in a conic vortex more like that 

of the tornado in existing without the intrusion of a solid central driving cone.  Large primary 

vortices often generate locally intense secondary vortices, such as the conic tip of each spiral 

wave (Fig. 1b herein and Fig. 1b-c, Howard 2006).  These small conic gyres have a frictional or 

viscous exterior drive from the base of the primary drive cone, which prevents the usual toroidal 

flow around the sides.  The core of each spiral tip arises near the axis of the primary gyre on the 

base of the drive cone through amalgamation of tiny initial whorls on the boundary layer of the 

drive cone, similarly to the coalescence of small vortices noted in the literature (e.g., Riccardi 

and Piva, 1998; Smyth and Peltier, 1994; and Melander et al., 1988).  The water particles within 

each of those secondary gyres move outward through the spiral wave planform in corkscrew 

spirals under their internal rotary flow combined with the primary centrifugal flow (Fig. 1b).  

The pointed inner end of the conic tip of each gyre itself vibrates in and out in a limited motion, 

but does not move centrifugally away from the vicinity of the primary axis.  The fluid particles in 

the rotary core body of the small conic tip must necessarily experience an effective PT reaction 

that holds the body inward toward the drive axis and forward on its own axis against the drag of 

the overall centrifugal flow.  As with the estimated PT forces in tornadic hemigyres before and 

after they come down against updrafts, these little secondary conic gyre bodies can only be in 

balance between the two opposed forces.   

 The spiral wave tips do not have the axial symmetry of the main gyres from which 

equation (2) was derived.  The conic tips or conelets are not right circular cones; their axes and 

bodies are bent.  On each of the two quarters of its sides adjacent to the bottom driving quarter, 

the flow of each conelet is in dragging shear along its areas of flow contact with the opposed 

adjacent rotary flows of its two neighbor conelets.   On the top quarter of its sides, each conelet 

is viscously losing rotational momentum at a lower rate to the upper inflow of fluid which is not 
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yet accelerated outward.  Still, approximate estimates of the main balance of forces can be made. 

 The conelets of the spiral wave cores (Fig. 1b herein and Fig. 1b-c, Howard 2006), are 

sketched as about 20 degree cones for schematic clarity to the eye with about 60 degree 

separations in the most typical case between centers of these small secondary conelets.  But as 

noted earlier, the full flow bodies of the spiral arm waves fill the areas between the cores with 

outer circulations, so that the full wave is much larger.  Consequently, a very small 30 degree 

conelet of length equal to the 3.96875 cm radius of the main 30 degree wood drive cone could be 

a suitable estimate model.  The axis at the centroid of volume and water mass of that model 

conelet would be approximately horizontal above the perimeter of the main 30 degree wooden 

drive body at about a 45 degree local angle to the tangent.  Per equation (2), in lab water with the 

usual density/viscosity ratio very close to 1, and rotating at the peripheral velocity of the 

maximum core rotational velocity of 229 cm s−1 actually measured in spiral wave cores and 

shown in the referenced figure, the model conelet would generate a PT of 867.23 dynes force.  

Even in the absence of toroids and possibly of full GD due to interferences, this PT would be 

expressed over the conelet body's effective flat base of 1.0634 cm radius.  The 45 degree 

component of this PT along the centrifugal radius from the axis of the primary large wooden 

cone resolves at a centripetal PT force component of 172.6 dynes cm−2 in the base area of the 

conelet body and, thus, on each cubic cm of water with its one gram of mass just within the 

body.  One of these 1 cm cubes will just contain the CV and center of mass of the small conelet 

body and is arbitrarily taken to be located at the center of mass directly over the perimeter of the 

large drive cone at the stated 3.96875 cm radius from the main drive axis.  (Note that the 

reference states that the higher measured flow velocities, such as the 229 cm s−1, are lower limits 

of actual velocities due to geometric effects, and that the real conelet rotating velocities are 

probably 50% higher than the number used in this PT calculation; there is margin for rough 
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estimation.)  

 It must be noted at this point that the entire spiral wave planform disk is not attached to 

the base of the 30 degree wooden cone which viscously drives the primary flow of the main 

vortex.  The thick disk (Howard 2006) is only held in that viscous contact by its own weight, if 

the axis is vertical, and by the general external pressure working against the Bernoulli drop in 

vertical pressure (Prandtl and Tietjens, 1957) due to the higher velocity flow between the disk 

and the base of the drive cone.  The spiral wave disk does not rotate with the angular rate of the 

base of the drive cone, but at only about 1 to 2 revolutions per second or less in the baseline 

conditions shown in the reference figures (Howard 2006).  Without further estimate of flow 

effects, if the centrifugal reaction force on 1 gram of mass at the stated water cube location is 

calculated at a typical 1 rps with a velocity of 24.9364 cm s−1, the apparent centrifugal force 

along the radius of rotation is 156.68 dynes.  This would estimate a static balance of these two 

principal forces within 10%, which would exhibit the presence of a body stabilizing force which 

only the PT is likely to provide within the flowing water of the typical spiral wave in such conic 

vortices.  For the grossly static positions of vibrating conelet bodies actually observed, the body 

of each conelet must move in or out radially in the spiral wave disk and speed up or slow down 

in the disk angular movement near 1 rps until its centrifugal and PT forces are in balance.   

  These estimates from empirical observations show that, when parts of a large storm cell 

are driven to sufficiently energetic rotation, PT force may indeed bring tornadoes down to the 

surface of the earth against the updrafts of air into the thunderstorm circulation.  

 

      (b)    Vortex flow fields and force anomalies in mesospheric nightglow/sprite discharges 

 In contrast with the previously cited reports on tornadoes from Project VORTEX, which 

always discuss mesocyclonic vorticity of large storm cells, and in spite of the general association 
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of vorticity with any large vertical convection in mid latitudes (e.g. van Delden, 2003; and 

Hoskins, et al., 1985), there is very little consideration of vortical effects in the literature on the 

study of sprites and related electrical discharges which occur in the transparent air of the high 

mesosphere above thunderstorm supercells, especially in the western plains area of North 

America (and at other favorable locations around the world.)  The emphasis has been on the 

widely reported vertical movements in and above these storms and the associated cloud-to-

ground lightning at lower levels (e.g., the historical survey of Lyons and Armstrong, 2004, and 

their references).  Probably that is due to the primary optical observations, in which many very 

significant convective weather cells do not exhibit much vorticity in their surrounding shells of 

visible clouds.  One monograph synopsis of an extended (40 year) study of the anatomy of 

thunderstorm cells discussed mesocyclonic rotation of the cells in only two cases (Fujita, 1992). 

 Despite the lack of attention, some occasional evidence can be found of vorticity in 

conditions favorable for sprites.  Recent daytime pictures from the STEPS program (Lyons and 

Armstrong, 2004) show a recognized wave cloud (that is spirally shaped) above the turbulent 

structure at the top of a large storm cell.  Also, there is a radar image of another large CN cell 

that distinctly suggests vorticity at the time of producing sprite discharges (Lyons, Nelson, and 

Fossum, 2000).  As that reference states, part of the data problem is due to the fact that not all 

large thunderstorm cells produce sprites, even in areas where sprites are frequently observed. 

   Fortunately, at least one very large supercell which did produce sprites, as well as 

glowing gravity waves in the mesosphere over the western plains of the US, was photographed in 

infrared by a GOES satellite twice in the same hours of the night as the sprite observations.  

These IR images show in the cloud tops a distinct, horizontal spiral wave structure (Fig. 2, 

Sentman et al., 2003), which could be generated only by definite vorticity in the storm cell below 

it.  Much more striking is the back-up video (made available by the senior author) showing from 
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a distant mountain top the circular sectors of radially moving gravity waves of night airglow 

around the central sprite discharges above the supercell.  At about 500 km distance from the 

storm the video frame interval (30 seconds) permits clear visual perception of the outward 

movement at about 85 m s−1 of the gravity waves as enormous ripples about 20 to 30 km from 

trough to peak and 40 to 50 km in wave length.  One excellent video frame showing this is 

archived in the report.  The report cites other references for these waves as arising from tuned 

organ-like pulsations of convection in the central storm cell with about the observed 10 minute 

wave period.  That kind of pulsing may occur from turbulent couplings of adjacent upflows and 

downflows in a CN cell.  Pulsing overshoots of convection surges have been photographed in 

elevation (Fujita, 1992; and Fujita and Arnold, 1963) rising a kilometer or more above moderate-

sized anvil clouds (not supercells) at irregular intervals and subsiding typically within 10 

minutes.  (This is reminiscent of the microseisms in the earth from the eyes of hurricanes, which 

were much discussed at weather meetings before the era of satellites.)  However, the short 

vertical length of the possible pulsing pipe compared to its expected diameter in such widespread 

storm cells as can cover most of the north-south dimension of Nebraska in the GOES images 

might not be expected in the presence of storm turbulence in the pipe to yield such well tuned 

regularity of wave emissions as are clearly recorded and reported.  Since there was significant 

vorticity present, there might be another contribution from its spiral waves (as seen in the GOES 

image of this supercell) to the regularity of emission of circular gravity waves.  The circular type 

of wave is always present in complete, spherical conic vortices going out radially from the spiral 

periphery at about twice the diameter of the turbulent GD (Fig. 1b herein and Fig. 1c, Howard 

2006).  Within the GD in the lab the centrifugal spiral flow is not only outward, but also upward 

at between 14 and 30 degrees.  This would correlate in the gravity wave origin with a possible 

transparent stratospheric spiral wave disk which would couple momentum outward and upward 
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into mesospheric gravity waves.  In this flow structure the laterally spreading anvil cloud tops of 

CN cells of all sizes would indicate lateral flow below the spiral disk into the upper portion of a 

toroidal flow structure in the lower hemisphere of a spheric vortex driven by the CN.  (Specially 

designed balloon-borne windsondes might be required to test these correlations.)  

  Though it may require repeated playback of the video (Sentman et al., 2003) to observe 

at the shallow angle of view provided by the combination of the distance, the earth curvature, 

and the 85 km altitude of the origin of the gravity waves above the storm, there is around that 

origin in the clear, but patchily glowing air, a repeatedly visible elliptical pattern of wave-like 

patches of opposite lateral directions of flow.  This is an apparent counterflow such as would be 

projected laterally by a locally horizontal circle of nightglow circulation.  This patchy apparent 

circle is in the same general region as the distribution of the sprites below the circle.  (The 5 to 

10 millisecond sprite discharges glow much more brightly than the faintly continuous night 

airglow.  The sprites appear in single frames from time to time during the two hours of activity 

recorded with a frame of 25-second exposure every 30 seconds.)  The circulation appears to be 

cyclonic and centrifugally distributed out from the top of the CN convection cell by its vorticity.  

It has a regular spiral wave pattern (with an upward component) like that of the lab gyres, which 

would contribute both regularity of gravity wave distribution and the radial momentum of the 

waves when beyond a central GD planform.     

 Since the tops of the clouds of such weather supercells can be as high as 20 km or more 

(Sentman et al., 2003), these spiral wave structures, with apparent GDs of as much as 150 km or 

more in the cited satellite image, would generate circulating effects by viscous coupling to a 

considerable altitude in the low viscosity air (sections 3 and 4) of the stratosphere and 

mesosphere.  This could centrifugally pump outward the GD-level air very much like the upper 

hemisphere of the complete spheric conic vortices.  By correlation of similarity to Figure 3 of the 
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prior note (Howard 2006) the rotating downflow which would result in the center of the 

planform might reach the altitude of the ionosphere.  This could bring previously ionized gases 

into the mesosphere for some reduced lifetime at the higher density.  Since the down flow would 

(through Coriolis effects) generate anticyclonic pseudo-forces, the flow structure could be 

expected to change somewhat from that in the lab, but the centrifugal, laterally outward removal 

of air mass packets at the lower level should continue to pump ionized gases down (in the same 

manner as any centrifugal water pump.)  The presence of ions and electrons, even at a much 

reduced percentage by increase of recombination rates due to density, would facilitate the 

electrical discharges seen in sprites, blue jets, elves, etc.  Some level of ionization must remain in 

a column through the mesosphere since the discharges are largely seen in the areas that would be 

influenced by such downflow above the clouds, and gravity waves also glow in the outflow.  

These effects could be seen as evidence of vortical coupling in the upper hemisphere of these 

storms as sphericly active, fully immersed conic vortices mechanically similar to those in the lab. 

 However, when the anvil cloud at the top of the storm cell is displaced laterally from the 

upper part of the cell, the sprites also appear displaced over the anvil structure (Sentman et al., 

2003; and Lyons, Nelson, and Fossum, 2000).  In the previous discussion it was pointed out that 

the force balance which keeps the spiral wave planform close to the top of the cone base in the 

lab is dependent on the Bernoulli reduction of vertical pressure due to the higher rotating  

velocity in the water immediately adjacent to the continuing drive by the cone below.  When the 

storm cloud matures and its vertical flow and vortical drive force coupling begin to decline, the 

momentum in the spiral wave structure will keep it rotating as a body until its momentum is 

viscously dissipated outward (Howard 2006).  In the lab water this delayed decay of momentum 

is quite definite.  When the continuing spiral wave pattern is no longer well attached to the storm 

cell by the Bernoulli effect, the spiral disk may blow to one side in any wind that displaces the 
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anvil cloud.  This would carry any ion downflow laterally (possibly through a bent channel at an 

angle dependent on the displacement rate) as well as carrying to the same side the higher 

electrically charged clouds which would then generate outside the storm cell the direct high-

cloud-to-ground lightning stroke that usually triggers the sprite display.  (A transportable 

ionospheric height measuring instrumentation may be able to check the validity of this 

implication.  Anomalous propagation of ham short wave radio might detect the effect at times.) 

 Thus, there are distinct mechanical correlations of weather vortices with lab experiments 

on single turbulent conic gyres.  The first paper of this series (Howard 2006) also correlated flow 

structures between lab experiments and tropical cyclones.  In the following sections, the forces 

between pairs of gyres at various relative axial angles have correlations with tornado vortices 

adjacent to convective supercells, or with the findings of Project VORTEX that horizontal 

vorticity along a cool boundary may contribute by axial tilting to the vertical vorticity of 

tornadoes  (e.g., Rasmussen et al.,1994; and Ziegler et al., 2001), and other weather effects.   

   

 

 Section 7.  PT-CORRECTED RADIAL MUTUAL FORCES BETWEEN PAIRS OF GYRES 

   AT RELATIVE AXIAL ANGLES---LIMITATIONS, VARIABLES, DATA, AND DERIVED EQUATIONS   
 

                                                                                                                                                                 

  For a condensed exploratory survey of empirical mutual forces between pairs of 

turbulent conic gyres, most of this research phase is limited to symmetricly arranged pairs of 

identically generated vortices from either of two sizes of right circular drive cones, with the 

single exception of trying both same and opposite senses of rotation at the bases of each pair of 

cones with each combination of the other variables.  Also, limits on ranges of separation between 

paired gyres that could be explored efficiently changed with many variables.  In the empirical 
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data on record of about 900 force measurements, there are at least nine independent variables 

other than symmetry, plus several near equivalents of two of them, and there are derived 

variables such as GD and PT which have major interactions.  It was possible to explore only the 

combinations of variables which were found by experiment to have the most general significance 

that might clarify force interactions of possible interest and yield equations on them for 

numerical and functional estimates over a range of scales.  In result, the data are limited cross-

sectional samples of the variables in a potentially much larger, multidimensional data field.   

 The main data organizing variables are by surface (S+) and fully immersed (S−) gyres, 

for which similarities are systematized where possible by setting the depth of the base of the 

drive cone for typical surface gyres at the depth of one base diameter (as noted with additional 

details in sections 2 and 3.)  Gyre pairs in relative contra-rotation handedness (H−), with no other 

difference in preset variables than the sign of S, are so similar in forces that they usually reduce 

to the same equations.  Gyre pairs in same handedness of rotation (H+), on the other hand, are 

distinctly different in the scale of forces between surface and immersed cases, and the derived 

force equations are adapted for this.  Same rotation H+ cases in S+ ( surface) also require special 

treatment for separation of effects of symmetric pairs of cones with either 20 degree or 30 degree 

whole cone angles (θ), and for changes of force patterns with relative axial angles (±α).  Other S 

differences arise in a shift of critically distinctive force effects with GD scale of radial separation 

(R) between CVs of the drive cones of a pair of gyres, and this also varies with α.  Referenced to 

parallel and co-directional axes of cones (reading from base direction) where α =0 (Fig. 4a), 

symmetric relative rotation of cone axes with points inward (PI), or opposed to some degree, 

yields a positive (+) relative angle α of twice the rotation of each axis in the plane of symmetry 

(Fig. 4b).  Symmetric relative rotation of axes with bases inward (BI), or opposed, is negative (−) 

rotation and results in −α  angles.  (These factors are organized for quick reference in Table 1.)    
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 These new variables, plus those of prior sections, control the principal force analyzed 

herein, i. e., the PT(and crawl)-corrected mutual force FM on each gyre along the radius of 

separation between the CVs of pairs of cones.  Positive (+) force repellantly increases separation 

between gyres, and negative (−) force attracts gyres into reduced separation on the pendulums.  

(Other forces are measured with immersed gyres, as noted in sections 2 and 8.)   

 Figures 4 c, for a sample of narrowly specific empirical data, and 4 d, for the calculated 

and normalized, general mean trend of all the empirical FM data recorded, illustrate typical 

experimental and derived curves for FM versus separation R in GD units of two conic gyres in 

either same hand rotation (upper curve) or counter rotation (lower curve) at 1X direct drive 

angular rates of the cones.  In the data curves (Fig. 4 c) the 30 and 20 degree cones have entirely 

different scales in centimeters of separation to match the single GD scale for both sizes of cones 

with their different GDs at similar (within 10%) angular rotation rates.  Also the vertical scale of 

force is a factor of 10 higher for the larger cones.  (The later single-case graphs of this type are 

more readily comparable with separations plotted in centimeters and a tick mark for each GD.)  

An additional pair of curves (Fig. 4 c) for the 30 degree cones at +13 degrees relative angle α 

between axes, shows that there is not a great increment of change with the small variation from 

vertical of 6.5 degrees for each axis.  It is important to give special attention to the unstable, or 

indecisive, cases of close approach (indicated in the figure by reversed arrows between two 

points) in which two vortices are observed to go abruptly from one semi-stable mutual separation 

and force measurement location to another, either between repeated runs, or once in a single trial 

run, or several sequential times per short run in a true oscillation.  This instability is especially 

noticeable when there are abrupt reversals of the direction of force from repulsion to attraction, 

which is the most common type of case.  There are also large swings away from a fixed position 

without going to another definite position.  Multiple downward arrows at the points of least 
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separation show that attractive forces on the cones have brought them (or parts of the pendulum) 

into contact (hit and stick together) with greater force than the pendulum positions indicate. 

 The forces may be characterized as essentially near field (NF) at less than 1.5 GD actual 

separation of CVs, or transitional field (TF) from 1.5 to 2 GD, and essentially approaching far 

field (FF) beyond 2 GD separation, though the transition effect does not effectively vanish until 

about 4 GD.  Beyond that radius of separation, with more sensitive instrumentation, the mutual 

force would vary in the classic Newtonian inverse of radius squared.  The force direction or sign 

for H+ same rotations of paired gyres usually reverses from repelling to attracting at small NF 

separations of 0.7 to 0.75 GD in equivalent consistency with other research on continuously 

varying (rather than abruptly changing) coalescence or merging of similarly rotating, non-

turbulent (rather than turbulent) vortices by general flow analysis (e.g., Melander et al., 1988; 

Smyth and Peltier, 1994; Riccardi and Piva, 1998; and their references).   

 When the cones actually come in contact at minimum CV separation with either co- or 

contra-rotation, the force on each cone can be estimated from PT (Fig. 3) and the average fluid 

ejection angle of about 14 degrees or 0.25 radians (Fig. 1b).  At an estimated fraction of 0.9 from 

interference between cones, there would be an empirical peak attractive force limit in the case 

with the 30° cones at the 1X direct drive VP of 873 cm/s (Fig. 4 c) of about: 

                ⏐PT⏐ 
        lim |FM | =   0.9  ⎯⎯⎯  =    3.6  ⏐PT⏐ =   340 gm,   (3)  
          R→0            tan 14° 
  
which compares well with trends of measured data and computed curves (Figs. 8 and 10c).   

 However, in calculating trends for most combinations of variables, the radial separation R 

in the equations for these forces is not actually equal to the simple GD quantity as it appears in 

the sample figures.  The real R must be multiplied by a variable combination of the GD and other 

variables to yield fR(R), which can be taken as 1 times the curve for comparison of Fig. 4d with 

the 30 degree cone data (Fig. 4c).  (A calculated curve for the 20 degree case would have a quite 
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different function.)  The function compresses or expands the two calculated curves (Fig. 4d) 

horizontally (Figs. 6, 7, and 8) so that the zero crossing of the upper curve is effectively shifted 

to left or to right on the actual GD or cm reference scale to approximate the varying separations 

(with changes of other independent conditions) at which the radial mutual force direction in the 

empirical data does typically reverse from repulsion to an opposite attraction with reduced 

separation between two gyres of the same rotation.  The lower curve (Fig. 4 d), which represents 

the usual continuingly attractive radial force (Fig. 4c) between two symmetric gyres in contra-

rotation (in distinction here from asymmetrics, Fig. 10), is also compressed or expanded (Figs. 6, 

7, and 8) with other variables to shift the knee of the calculated curve (not the data) horizontally 

to left or right on the actual GD or cm data scale, by separate rules (all as organized in Table 1.)  

 The cause for these GD shift (GDS) variations in the calculated curves can be seen in the 

miniature display (Fig. 4 b) of the outlines of the secondary formations of two complete spherical 

(immersed) gyres at +30 degrees relative axis angles.  Whether immersed and sphericly 

complete, or at the surface and reduced to hemigyres, two conic vortices present significantly 

different symmetric aspects to each other (at any given separation) as their axes are rotated 

relative to each other (Figs. 4a and b).  The interactions and forces change by more than the 

trigonometric functions, with relative angle variation alone, as well as with other variables.  But 

the basic GDs do not necessarily change with many of these variables.  Consequently, the R 

function in GD units must vary in GDS with same or counter rotations.  In addition, there must 

be changes of vertical force levels by means of additional coefficients for many variables, in 

which relative angle is again significant.  There must, then, be two sets of variable factors or 

elements (for radial separation R and for relative axial angle α) in the single complete mutual 

force equation (4).  [If more explanation is needed, an expanded back-up of this paper is to be 

posted on a reference website (Howard 2006 or the publisher's) at the time of this publication.]  
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 The curves of Figure 4d are produced by subsequent equation (15a), which is the general 

mean of a variable coefficient in equation (4) controlling GDS.  But that coefficient is used only 

with modifying factors, and it is one of two variable coefficients affecting radial mutual force in: 

   1    ρ          A sin θ    s   
  FM  = ⎯  ⎯⎯  ⎯⎯⎯⎯⎯    V 
    2    η        9.807 × 10

p    f(α)TBD  f(R)TBD,    (4) 2  
 
where the functional coefficients are chosen from the remaining equations (5 to 24) by the TBD 

(to be determined) rules summarized in Table 1, and the other variables and coefficients have 

been defined previously. While it is much simpler in the table and far more convenient in 

experimental set-ups to use degrees, the equations that follow must be understood to use radian 

angles unless otherwise specified.  Here the sine factor is probably not valid more than 50% 

above or below the limited 20 to 30 degree range, and must often be adjusted by the functional 

coefficients even there.  The remaining equations for the coefficients will be taken up in the 

logical order in which they appear from top to bottom in Table 1 (with one exception.)   

 In the general features of Table 1, since surface hemigyres do not have a complete upper 

hemisphere, they have a simpler equation organization with less than half as many entries in the 

table.  The more complete and complex shape of the full spheric immersed gyre (Fig. 4b) has 

more variation of coefficients with angle changes.  The table also organizes complex variations 

of the effects of all the other (only apparently simple) factors of equation (4), such as viscosity 

and peripheral velocity, and their interactive combinations.  In the more turbulent regime of these 

experiments, the component factors of the conventional Reynolds number do not appear to have 

as simple and invariant a form as in more nearly laminar flows, nor the simple form that equation 

(4) taken alone appears to indicate.  It is more quickly comprehendable and brief in description 

to discuss all the equation options by their general features before comparing them to empirical 

data in Figures 6, 7, and 8, with 44 subfigures.  (The discussions of lab force measurements will 

then also include further correlations and implications to violent weather mechanisms.) 
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 As indicated in Table 1, equation (4) for FM applies in all cases of symmetric gyre pairs 

for which empirical data were gathered.  So does equation (15a) which describes Figure 4d as the 

general form of fR(R) for the f(R) factor in equation (4).  However, equation (15a) is used only in 

the modified or adapted form of equation (15b) with its various selections of modifiers (Ci, Cj, 

and Ck) for most areas of use.  In contrast, there is no single master equation for the f(α) factor in 

equation (4).  Most of the adaptive modifications change the forms of the equations substantially, 

so that it is more suitable to substitute entire f(α) equations into equation (4) to adapt to the 

combinations of variables in the experiments.  Table 1 takes up these f(α) factors first.   

 The simplest f(α) table entries are in contra-rotating vortices (with H = − 1 where 

needed), which affect the non-reversing lower curve (Fig. 4d) and have separate column areas in 

each part of Table 1 for surface and immersed gyres,.  The simplest columns are for 0 to +180 

degrees α (Fig. 4a) with cone points inward PI and usually base-driven BD.  (Obviously, electric 

motor drives of surface gyres through the surface can only go to about 150 degrees relative.) 

However, in some cases data were taken at 0 degrees with both BD-PI and point-driven PD-BI 

drives, and different 0 degree equation adaptations can be necessary to match some conditions 

with the different drives (though actually, there is no BI or PI relation at 0 degrees α.)   

 The f(α)1 equation (5) for positive α in that simplest area of Table 1 is complicated by 

approximating a departure of the empirical data from its apparent norm of 1 (one) for f(α) by a 

factor of about 1/2 at both π and π/2 relative axial angles (or +180 and +90 degrees.)  The 

possibility of this kind of peculiarity was anticipated earlier in the discussion of Figure 4b.  

Accordingly, the equation (5) for Figure 5a involves a long and very simple series with 

disturbances of the sequence at the π and π/2  points, as: 

                  y 
f(α)1 = 1− fQ(y) = 1−  ⎯⎯ [y−(1/6)]  [y−(1/3)]  [y−(2/3)]  [y−(1)]  [y−(4/3)]  [y−(5/3)]  [y−(2)]   
                109    
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[y−(4)]  [y−(13/3)]  [y−(14/3)]  [y−(5)]  [y−(7)]  [y−(22/3)]  [y−(23/3)]  [y−(8)]  [y−(25/3)]  

  

[y−(26/3)]  [y−(9)]  [y−(28/3)]  .............{(1/2)−(H/2)}  ,         (5) 

where y =  lαl/π/6.  It is not necessary to refine the series further at the present level of 

experimental uncertainty.  (Using the zeros and picking the points off the curve of Fig. 5a is 

quite adequate.)  The final multiplier on the series in brackets is needed only if it is preferable to 

have the entire equation revert to 1 for same rotations of gyres with +H, where it is not 

applicable, rather than following the table by removing the equation.  (Similar vanishing factors 

or terms may be employed with the other equations of this note if desired.) 

 Somewhat similarly, equation (6) covers the adjacent areas of negative relative axis angle 

or −α from 0 to −180 degrees with bases inward BI (Fig. 4a) in contra-rotation of two gyres.  

(Note that the double entry in Table 1 for 0 angle indicates using the equation which fits the 

drive, point or base, especially with surface vortices.)  Equation (6) has the effect (Fig. 5b) of 

inverting and reducing the variations with angle of equation (5) to approximate the typical trend 

of the empirical data.  (Since the ripples of the curve between zeros are not used, they are only 

dotted in.)  Accordingly: 

    f(α)2 = (3/4) + (1/2) fQ (y) .    (6) 

 However, in the area of 0 to −60 degrees α, point drive PD-BI/0, immersed, with contra-

rotation, that coefficient is not sufficient and must be modified to: 

    f BI0 (α)   =   2  f(α)2  .     (6a) 

 The variations of effects with same hand or co-rotations of two symmetrical gyres not 

only follow the reversing effects shown in the prior upper curves (Figs. 4c and d) with varying 

radial separation, but also are quite different in immersed vortices from those of surface vortices, 

as is indicated in Table 1 by the eight additional versions of  f(α).   The four functions which 
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approximate the empirical data for immersed vortices in same rotation are based on equation (7) 

(Fig. 5c) with three adaptations for the effects of Vp in later equations (8, 9, and 10) for different 

zones of relative angle variation.  The basic equation (7) is a very simple function of relative 

axial angle α between + and −π, as:  

             1           4 
   fH(α) = 1 −  ⎯  tan  ⎯ α  .     (7) 
            17          9 
 This equation (7) applies directly only to the range of + 150 to +180 degrees of relative 

axial angles in BD-PI same rotation of immersed gyres.  For 0 degrees it must be adapted for Vp 

effects, as: 

        1     1.5                        
  fHV0(α) =    fH(α)[   +(⎯⎯ )  z   − 1)] ,    (8) ⎯ (
            2       0.34               
 
where z = (Vp/800) when Vp is not less than 750 cm s−1 for equation (8) only, but not for use of z 

in other equations.  (Due to lack of empirical data, it is not certain how this equation should be 

modified at α = 0 in immersed vortices for Vp less than 750.  The uncollected term is useful.) 

 Similarly, the broad trend of the sparse data in this immersed same rotation area for α in 

the ranges +30 to +120 degrees and −30 to −120 degrees indicates that equation (9) is matched in 

Vp  effects only for 90 degrees in either polarity, as: 

     1  
  f (α)   =   f (α) ⎯⎯⎯⎯⎯⎯⎯⎯     ,     (9) HV1 H
         3z −0.75                 
        ( ⎯⎯⎯⎯   +  1 )       
                  2                   
 
 
where  Vp  in z is known to be applicable to all the experimental velocities tried in these 

conditions, but at 4X gear ratio there are no data.  

 However, with similar provisos, equation (9) may be slightly modified for the remainder 

of that range of  α , 120 degrees and 30 to 60 degrees of either polarity, as:  

     1  
  f (α)   =   f (α      .     (9b) HV2 H ) ⎯⎯⎯⎯⎯⎯⎯⎯

   
       ( ⎯⎯⎯⎯   +  1 )       
           3z −0.75              

                  6   
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 A similar wide range of Vp  effects is covered for the −180 degree PD-BI relative axial 

angle for immersed gyres in same rotation by a more complex relation in: 

   fHV3(α) =   2f(w)  fH(α) ,      (10) 

where 

             −  3 π 
   f(w)  =    (⎯⎯ w ln w  ) ,     (10a) 
             5   zz  
 
where z continues to include Vp , and w = 2 z − (1/2).  As previously indicated in considering the 

shape implications of gyres (Fig. 4b), exact coaxial alignments of axes may be associated with 

peculiarly discontinuous variations of mutual force, like the one described by the effect of these 

two coefficient equations on equation (4).  

 The complex factor adjusting for Vp effects in equation (10) is also applicable much later 

in the sequence of development of Table 1, at two otherwise non-similar PD-BI areas shown at 

the bottom of that table, as a special coefficient for modification of GD shift for Vp effects in 

equation (15b) as: 

    CVV  =   2f(w)  .       (10b) 

 Surface vortex pairs of the same rotation interact with the surface, when at positive PI 

symmetric relative axial angles off the vertical, in such a way as to produce between gyres an 

increased repulsion due to a raised plateau of water several cm high. (For more explanation, see 

the expanded back-up at the website for Howard, submitted.)  This high peak in repellant mutual 

forces over a range of angles below π/2 in the PI +α co-rotating data for surface gyre pairs 

suggests an exponential impulse curve (the solid curve in Fig. 5d) and equation (11) with 

adaptation terms, such as:  

        3ye              α 
  f [α] =   2 +  ⎯⎯⎯⎯     −  5 sin ⎯⎯   +  fA    P(y) ,          (11) 
        ey                               9 
 
where y = ⏐α⏐/π/6 (again) from α = 0 to + π, and:   
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   y 
     fP (y) =  ⎯⎯⎯⎯ (y − 1/2) (y − 1) (y − 3/2) (y − 6) (y − 7) (y − 8)............(y − 14)  .   (11a)  
         π  × 108 
 

These equations cover the broad trend of all the surface data for co-rotating positive PI angles as 

the general form of the trend and can be used in that way.  However, these equations are not the 

best fit above 90 degrees, and also the data for the smaller 20 degree cone and the larger 30 

degree cone at the surface are sufficiently bimodal that further adaptation in whole cone angle θ 

(Fig. 5e) to distinguish the two modes is preferable.  Therefore (respectively), equation (14) is 

used from +120 (or possibly +105) to +150 degrees, and from 0 to +90 (or possibly +105) 

degrees equation (12) is used containing equation (11) as: 

       fAθ [α]PI = fA [α]  fBM(θ) ,     (12) 

where: 

 
                       100           α + 7.5 (30 − θ)                 
B  2     −

          [      1+(0.2α)
f M(θ) =1− 0.35 cos α + ⎯⎯⎯⎯ + 4 ⎯⎯⎯⎯⎯⎯⎯⎯  0.015(30−θ)+ 0.015(θ−20) ,  2                     100             ] 
                            1 + ⎯⎯⎯⎯⎯⎯⎯    
                                      α +1+15 (30 − θ )                              (12a) 

where the use of radian angles would be very inconvenient, and degree angles are employed.   

(But it is not known how far into larger and smaller cone angles such a phasing effect as Fig.5e 

should be extended by some unknown equation.) 

 For the BI negative α in surface gyres there is a much less impulsive increase above the 

normal level of the same rotation repulsive forces in the vicinity of −30 degrees (Figs.5d), and 

the following adaptation of equation (11) is used in that area:  

        2ye                ⏐α⏐ 
  f [α] = 1 +  ⎯⎯⎯⎯     −  2.5 sin ⎯⎯   ,                             (13) B   
        ey                                 9 
 
where y is used again, as in equations (11 and 11a) and the absolute values of α apply. As shown 

in Table 1, equation (13) must be applied in the 0 to + 60 degree α  region of immersed co-

rotating gyres.  This equation (13) is also used with adaptation for whole cone angle θ in 
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equation (14) for the +120 (or possibly +105) to +150 degree sector of the positive PI angles of 

surface vortices, as shown in Table 1: 

     fBθ [α]PI = fB [α]  fBM(θ) ,     (14) 

which completes the demonstrated requirements for adaptation of the f(α) factor in equation (4). 

 The general equation for variation of effects (Fig. 4d) on mutual force from separation of 

pairs of gyres f(R) in equation (4) for both surface and immersed gyres, must account for the 

reversal of mutual force directions in co-rotation as R approaches zero.   Therefore, the equation 

must be impulsive in nature for the same rotation portion of the dual curve.  For this upper curve 

alone, consideration may be given to alternative similarly shaped functions (e.g., pages 143 and 

231 of von Seggern, 1993), one of which might have the advantage of being adaptable to 

inclusion of the attractive force limit separately stated here in equation (3).  However, the new 

equation (15) used herein describes both the upper (co-rotation) and lower (contra-rotation) 

curves (Fig. 4d) (not including the force limit), as: 

   1       H        16                  1                           H          
 f (R) = (⎯ + ⎯ − ⎯⎯⎯ )   ( ⎯⎯⎯  )  +  ( ⎯⎯⎯ ) ,                     (15a) R
                  2      2      (1+3R)2          (1+R)R−1                     (1+R2)    
 
wherein H provides the appropriate change of sign of 1 for the upper or lower curve.  This 

general coefficient equation for application to adapting equation (4) must also be computed with 

additional internal factors to modify R adaptively, as equation (15b) indicates: 

    fR(Ri,j,k,l)  =  fR(RCi Cj C k C l)  ,        (15b) 

where the basic real R is read in the actual GD units for the measured data or for a selected real 

value before GD shift.   Ri,j,k,l  is thus employed to determine the factoral value of fR(R) to be 

applied to equation (4), either by reading its factoral value roughly on the curve of Fig. 4d or 

calculating it in equation (15a).  But the real R has an effect on equation (4) only after being 

shifted in GD value to Ri,j,k,l by equation (15b).  Here Ci , Cj , and C k , and even Cl on occasion, 

are each equal either to 1 (one) or to any coefficient shown in Table 1 as applicable to the case in 
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question.  These coefficients are supplied by equations (16 to 24 and 10b) where the general 

indices for the coefficients above are converted to the appropriate specific indices.  The 

coefficients then have the ultimate effect on equation (4) of either shrinking or stretching the 

scale of equation (15a) and Fig. 4d horizontally in GD units and thus of also shifting the affected 

one of the two computed curves (not the data) in the proper direction on the GD scale to fit the 

empirical effects of the many variables in each specific set of conditions.  The two upper and 

lower curve shifts specified for any particular single relative angle case by the vertical columns 

in Table 1 will not usually compress or expand together or in the same way or degree.  Thus, the 

co- and contra-rotating GD shift effects are independent of each other.  These strong variations 

of mutual force with relative axis angle α and other effects are forecast from consideration of 

Figs. 4b and 1b with their clear indication of juxtapositional irregularities in mutual interaction 

forces with variation of relative axial angles. 

 The first of these adaptation coefficients for use in equation (15b) is an additional factor 

for Vp  for all cases, as:  

                  CV =  zz   ,      (16) 

where z = Vp /800 again.  If z = 1, the curve is not shifted by this coefficient.  If z is near one, the 

shift is small and may be negligible within empirical error.   This coefficient is used (Table 1) 

without further factoral adaptation of equations (15a and b) only for same rotation surface 

vortices from  −75 degrees to +45 degrees of relative axial angles.  

 For all contra-rotation cases, whether surface or immersed, the effective R from equation 

(15b) is multiplied by an additional factor for viscosity, which completes its adaptation for shift 

of GD scale of the lower curve (Fig. 4d) in surface counter rotation, but does not complete the 

adaptation for immersed counter rotation.  This shift factor is:  

     Cη =  (ρ/η)2/3  .        (17) 
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 Each R in fR(R) of equation (15b) for the immersed counter rotating pairs of vortices 

(Table 1), must not only be multiplied by equation (17) for GD shift of the lower curve but also 

by an additional coefficient or factor, which is selected for a narrower range of α.  For +180 

degrees alone the two cone whole angles must be distinguished by a factor which is active on the 

20 degree cones, as: 

     C2s =  (2 sinθ)2  .            (18)  

Here it is not known how far this effect (and similar effects to follow) should extend into larger 

and smaller whole cone angles as a general relation. 

 For the broad middle range from − 150 to + 150 degrees α, the additional factor is active 

on the lower curve for the 30 degree cones, as:  

     C3s =  (3 sinθ)2/3  .                       (19) 

 For −180 degrees in contra-rotation of immersed gyres, that equation (19) must be 

inverted to adjust the lower curve for GD shift, as: 

     C3sl =  1/ C3s  ,             (20)  

 which completes the list of dual factors used with equation (17) with impact on the lower curve 

(Fig. 4d) for contra-rotational gyres.  However, this factor (20) is also used alone with equation 

(15b) for same rotation surface vortices from + 60 to +150 degrees, where it effectively shifts the 

zero crossing point of force reversal on the upper curve for the 30 degree cones. 

 For +180 degrees α in same rotation of immersed vortices, the reversal point shift is 

adapted for VP (especially to distinguish 30 degree cones from 20 degree cones) by a change of 

the exponent to include the z velocity ratio in equation (20), as: 

     C3l1 = 1 /(3sinθ)3log z   .            (21) 

 For − 180 degrees α in same rotation of immersed gyres (with 30 degree cones), a further 

small change of that z exponent in equation (22) suffices.  The same coefficient (22) is also 
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needed from − 150 to + 150 degrees in same rotation of immersed gyres, but with the additional 

factor of equation (23) over that broader range of angles.  Again in same rotation of surface 

vortices from −150 to −90 degrees, equation (22) will be needed but with the further factor 

assistance this time of equation (24).  (Note that the 20 degree cones were not tested over the 

broad range of negative relative axial angles nor for as many positive angles.)  Thus, the most 

widely applicable of the three coefficients remaining to be discussed is:  

    C3l3 = 1 /(3sinθ)3log 3z,     (22) 

which is used by itself only for −180 degrees, but combines for broader coverage with: 

    1 
  CT =   ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ .     (23) 
              2 
   1 −  ⎯⎯  tan2  0.485 α 
           3 π2

 
 Coefficient (22) also cofactors with coefficient (24), as noted, for the high negative axial 

angles of same rotation of surface vortices, as:  

    CSS  =  5/(3α) ,      (24) 

where α is in radians. 

 Finally in Table 1, equation (10b) provides a special cofactor for GD shift in the cases of 

high negative axial angles α in contra-rotation of immersed gyres.  This completes the 

demonstrated adaptations of f(R) in equation (4). 

 Several attempts were made to determine a general corrective coefficient for surface 

roughness of the drive cone.  The 20 degree cones were of polished brass, to which thin coatings 

of roughness similar to that of the wood cones were glued.   Finally, the polished surfaces were 

roughened to a level similar to that of the wood cones with the corner of a file and a hacksaw.  

Some of the force data did change, as shown in Figure 5f.  In a few other cases the change, if 

any, was clearly less than the uncertainty in the very low level force measurements for the rough 

or smooth small 20 degree cones.  The roughnesses did extend beyond the body diameters at 
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most points on the sides of the cones, and the effective slight increase in side area may have been 

the sole cause of the changes.  It is thus found that larger, polished and roughened metal, 30 

degree scaled cones of identical peak diameters, with roughness only from small removals of 

surface (as by patterned chemical etching), would be required to obtain a definite result for 

roughness effects with this pendulum instrumentation.   

 To illustrate the general effectiveness of these empirical formulations (4 through 24) 

wherever definite experimental results were obtained, the subfigures of Figures 6, 7 and 8 show 

comparable sets of the measured and corrected radial mutual force FM data and the computed FM 

curves specified by Table 1 for each case.  The data and the associated curves are shown in the 

reduced graphs of Figure 6 in juxtaposition with Figures 7 and 8 so that the eye can see at a 

glance the radical variations and general trends of the data.  The noisy quality and the sparseness 

of the data for each narrow set of conditions are also easily seen, but the averaged broad trends 

of the data and of the equations that characterize the observed effects are quite clear. 

 The way in which surface vortices are limited in this series of research notes to having 

the drive cones nominally one base diameter below the surface does minimize the differences 

between surface and immersed vortices.  However, the differences are significant in the high 

repulsive force peaks for surface gyres in the vicinity of 30 to 60 degrees relative axial angles, 

especially in the positive angles (Figs. 5d and 6c to f).  In the experiments for this area the effect 

on turbulence in the GD was especially visible at the surface as the repulsive force increased, 

rather than decreased, (counter-intuitively) with separation of gyres for points inward PI with the 

30 degree cones at 1X drive gear ratio over the NF 1 to 1.5 GD separation of CVs (Figs. 6c 

through f).  These experimental conditions combine in the contact area between the gyres the 

amounts of opposed flow momentums that would otherwise be distributed over larger areas and 

be entrained in part into toroidal flow without such a well focused opposition of flows.  [See the 
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expanded back-up at the prior reference website (Howard 2006).]  A similar repulsive force 

effect to a less striking degree is also present in immersed PI and BI cases (Figs. 7b, c, and 8e).   

 In some empirical cases the cones collide and stick together, indicating that the real 

attractive force is much greater than the pendulums can measure.  The attractive forces (Figs. 8f, 

g, and i)  appear at times to approach the limits predicted by equation (3). 

 A striking feature of the data (Figs. 6e and f, 7b, 8b and c, and 4c) is the frequent 

occurrence of ranges of unstable mutual radial forces in which, when CV separation is decreased 

along the upper curve (Fig. 4d) for same sense rotation under turbulent conditions, large abrupt 

changes in mutual radial and non-radial force may occur, including reversals from repulsive to 

attractive force and brief oscillations.  These unstable effects appear both on the surface and in 

full immersion.  They most obviously occur with same rotations, but contra-rotational cases of an 

equivalent abrupt change of the level of mutual force with oscillatory tendencies are also 

noticeable (Figs. 8d and i). The frequent abruptness of the empirical effect observed here in three 

dimensional conic flows with solid driving cores in the presence of strong secondary flow 

turbulences, is obviously related to many analytic studies (e.g., McWilliams, 1984; Melander et 

al., 1988; Smyth and Peltier, 1994; Riccardi and Piva, 1998) of largely smooth mergers of 

laminar primary flows without secondary flow complications, usually in two dimensions with 

extensions to three dimensions.  The present more extended empirical findings of the repeated 

presence of abrupt force changes and reversals at short separations of turbulent conic gyres on a 

GD scale should indicate distinctive consequences in natural events.  This unstable abruptness 

must have correlative implications in weather and in oceanic water flow as a contributory source 

of some of the uncertainties in weather prediction, in navigation through ocean current eddies 

and flooded river outlets, and in flight conditions, as further noted in sections 8 and 9.   
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   8.   NON-RADIAL OR LATERAL  FORCES OF SINGLE AND SYMMETRICLY  PAIRED CONIC VORTICES 

 

 Reports in the literature, such as those just cited on the merger of vortices, show the 

general effects of lateral forces (typically when two non-turbulent, two-dimensional gyres circle 

each other in the process of merging rather than approaching each other along the radius of 

separation), but, as before, without turbulent secondary flows and more complete 3D conditions. 

 The limited number of experimental runs of this section (and section 9) very briefly 

samples the comparative scale of other types of forces than the symmetric radial force of section 

7 and the PT of section 5.  This section is limited to forces perpendicular or lateral to the radial 

force in symmetric experiments.  Additional limitations are due to the use of low friction guides 

on the pendulums to isolate radial mutual forces between surface gyres by eliminating lateral 

motion, including crawl.  (In the immersed experiments it was necessary to determine a crawl 

force to correct radial and lateral forces.)  Also, with pendulum instrumentation the number of 

definite measurements of lateral forces is limited by an uncertainty in the amount of force 

(perpendicular to the radial force) involved in maintaining coaxial alignment in the plan view of 

gyre pairs that begin an experimental run approximately in coaxial alignment.  In other cases 

without initial coaxial alignment there is a definite force toward alignment, but the amount of 

that force is not readily isolated.  Consequently, in Figures 9a and 9b (as well as in Fig. 10 in the 

next section) many data points for forces that are perpendicular to the radial force between CVs 

are limited to being plotted only at an arbitrary low negative value indicative of tending toward 

coaxial alignment of gyre axes or of holding them locked in coaxial positions, especially with 

contra-rotating pairs.  In some cases the amount of force tending toward coaxial alignment and 

perpendicular to the radial force could be determined and is shown, for surface cases (Fig. 9b), 
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and for immersed cases (Figs. 9a and 10).  (The GDs, PTs, and Vps for these force curves may be 

obtained from prior curves (Figs. 1a and 3) by using the gear ratios shown.) 

 The crawl force (Fig. 9c) corrected for in immersed experiments (Figs. 7, 8, 9a and b, and 

10) is exhibited by a single conic gyre whenever its axis is not vertical to the fluid surface.  The 

asymmetry of pressures and viscous reaction loads from adjacent fluid masses on the sides of the 

cone tends to make the typical tilted gyre crawl as if the downward side of the drive cone were 

getting limited viscous traction on a non-existent roadbed beneath it.  When a base-driven, base-

up, conic gyre is tilted to the observer's right from vertical and is in left-hand rotation about its 

own axis through the base, it tends to crawl away from the observer under the influence of a 

force which can be labeled positive in direction as increasing the distance of observation.  (For 

the practical immersed gyres used herein, the effect was significant in the horizontal plane of the 

two gyre axes, and correctional crawl force was measured with the cone axis horizontal.)    

   At plus and minus 180 degrees relative axial angles, the symmetry of the perpendicular 

corrected forces around the radius of separation of the CVs indicates that |FL| = |FP| and that their 

signs are the same, and thus both are effectively measured (Fig. 9a) for the sample conditions.   

 Figure 9a shows some typical mutual non-radial forces FP at a wide range of gear ratios 

and CV separations in centimeters.  For the very limited relative axial angular sample cases of 

only positive and negative 180 degrees, the lateral and in-plane non-radial mutual forces over a 

very limited 30 to 35 cm range of CV separation do not appear too inconsistent with the radial 

mutual force data (Figs. 7g, i, j, k, l, and 8g, i, j, k), nor with the adaptations of equation (4) for 

radial force in these conditions.  However, both above and below that very narrow range of CV 

separations the differences from the radial forces are distinctive, especially for the co-rotational 

2X gear ratio which indicated a considerable force toward coaxial alignment (negative direction) 

at greater separations for the only time a fully corrected force appeared to have this definite trend 
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into negative signs with increasing separation in co-rotation with symmetric gyres.  [This trend is 

not inconsistent with the inverted signs of data in asymmetric gyre situations (Fig. 10).]  

  With smaller CV separations than 30 cm, the range of positive data (Fig. 9a), for FP  

repulsion of coaxial alignment of immersed co-rotational +180 degree α gyres at all drive gear 

ratios, is 50 to 100% higher than for the maximum positive radial FM force data in the equivalent 

subfigures just cited.  The radial force data for immersed gyres rarely reach such positive values 

consistently over a wide range of other conditions except at the small relative axial angles below 

90 degrees (Figs. 7b and c, 8b and e).  This distinctive difference between the radial and non-

radial forces indicates that they are out of axial angular phase in a limiting effect on the vector 

sum totals of these forces as an expression of the vortical power (Fig. 2).  Such an effect in 

variations of directions of total mutual force between gyres with relative axial angles would be 

closely relevant to the location and relative movement of tornado vortices adjacent to storm cell 

vortices in geographic plan, as well as to effects in the generation of tornadoes cited next.   

 As with radial forces, abrupt changes of level and reversals of direction of mutual forces, 

toward or away from coaxial alignment (Fig. 9a and b), are prominent in these data, as well as in 

the data of asymmetric vortices (Fig. 10a, c, and d).  These limited data have implications for 

further study in the possible augmentation of tornado or waterspout vortices by the turning of 

short (somewhat conic) sections of horizontal cylindric gyres along local frontal boundaries as 

proposed in Project Vortex (Rasmussen et al., 2000; and Ziegler et al., 2001).  These previously 

undescribed vortex re-orientations and abrupt reversals can also apply to flight conditions 

between vortex trails at busy airports and near developing micro-bursts in aircraft landing 

patterns, as well as to initiation and tracks of tornadoes and waterspouts in supercells or tropical 

cyclone rainbands on land or sea, to down-bursts in hurricane eye-walls, or to secondary and 

tertiary turbulences within and near storm cells generally.   
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     9.   ASYMMETRIC FORCE MEASUREMENTS     

 

 A limited number of force experiments with asymmetric vortices and with similar gyres 

in asymmetric positions were run in selected surface and immersed geometries that represent a 

small part of the scope of the possible geometries of research and operational interest.  These 

include a coaxial base-to-point reference case, rotations of one axis from that reference and from 

symmetric cases (Fig. 10), a 20 degree cone paired with a 30 degree cone (not shown), an active 

cone with an inert cone (not shown), etc.  (Pairings of identical cones at different rotational rates 

were omitted as less probable in nature.)  The data were too widely varied and too narrowly 

limited in each type for additional equation adaptation.  [For more discussion, an expanded back 

up is to be posted on the prior reference website (Howard 2006) after this publication.] 

 However, this short series of asymmetric experiments also included the largest 

measurement of attractive mutual radial force of 324 grams (Fig.10c), at very near the limit of 

340 grams for 1X peripheral velocities estimated in equation (3) of section 7.  That occurred with 

an asymmetric 30 degree angular displacement at the CV of one 30 degree cone from the coaxial 

BI  −180°α symmetric configuration.  This force measurement illustrates most conclusively the 

distinctive downward pumping action of the spiral wave in the upper hemisphere of vortices, as 

discussed in section 6b on downward inflow over a weather supercell (per Figs. 8g and i).   

 Above the more powerful vortex of a hurricane the low downward flow velocities over a 

much larger area of the mesosphere would focus an exceptionally large total downward 

momentum into the center of the spiral wave disk in the normally more compressed stratosphere.  

In the lab surface gyres (Fig. 1b), at the point in the spiral disk of change of water flow direction 
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to outward there is typically an upper axial opening of air above the disk of water down to the 

center of the cone base.  Thus, in spheric gyres, especially in the flattened sphere of a hurricane, 

there would be little central back pressure to stop the focused downward momentum (and 

likewise, no solid drive cone barrier.)  Down flowing air momentum could penetrate similarly to 

the lowest level of the spiral wave disk and through it to contribute to the peculiar conditions of 

clear skies and calm weather in the axial eye of a hurricane, in its lower hemispheric driving 

body.  (Radar chaff displays could test this.)  Such penetration would be aided by centrifugal 

evacuation of the humid air of the lower eye into the inner margin of the convective eyewall 

below the spiral disk, provided that the hurricane is in a static balance of its various flows. 

  Such penetration conditions would occur when the upper axis is coaxial with the lower 

level eye of the cyclone, as with the increase of eyewall intensity and wind velocity in Hurricane 

Camille during loss of forward movement.  Lateral deviations of such a downflow out of the 

coaxial alignment would create a breakdown or opening of the hurricane eyewall.  This could 

occur when less humid continental air is entrained near the eyewall on coming ashore and 

weakens the cyclonic rotation on one side.  It may also arise from upper level winds which 

displace the upper hemisphere even with initial high rotational power.  When the lower level 

cyclone is building vigorously and moving geographicly at a high rate in tropospheric air mass 

flow, the inertia of the upper hemispheric mass may result in a trailing tilt in the upper axis with 

enough narrowing and offset of downflow into the eyewall to disrupt and open it initially, but a 

reconnection of the axes could cause a second inner eyewall to form.  These empirical predictive 

implications indicate further extensive research in mesospheric flows above hurricanes.   

 

    10.   CONCLUSIONS 
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 An experimental laboratory survey and measurement of the little known mutual forces 

between pairs of highly turbulent conic vortices, with definite secondary flow structures, finds 

new explanatory correlations with the mechanical features of several forms of violent weather 

involving single and multiple vortical flow regimes.  Outstanding in this are:  (a) A direct 

numerical correlation of the newly described point thrust (PT) force of single hemispheric or 

sphericly complete conic gyres with the descent of tornadoes from mesocyclonic storm cells 

against the storm updraft.  (b) A directly predictive correlation of the newly described spheric 

flow structure of single conic vortices with the presence of mesospheric sprites and other 

extremely high altitude electrical discharges observed over storm supercells at night.  (c) Further 

predictive correlation of those conic spherical gyre structures with the source in such supercells 

of large scale mesospheric gravity waves faintly illuminated in night airglow.  

 Other weather implications of the forces and complete structures of these turbulent conic 

vortices related to forecasts of surface danger on land and at sea, to planning for storm 

emergency responses and recovery efforts, and to safety of flight from high altitude to landing 

and take-off or other low level operations, include:  (a) The findings of this note that there are 

numbers of different unstable conditions in which the measured mutual forces between vortices 

may change their force levels, reverse the force directions abruptly, or quickly re-orient the axes 

of gyres; which effects could be significant to rapidly changing vortex trails and microbursts near 

airports, to thresholds of tornado formation and to present uncertainties in the location of tornado 

vortices adjacent to large convective storm cells.  (b)  A predictive implication that the vortical 

structures and forces which explain the mesospheric effects observed over supercells should also 

occur over tropical cyclones and cause the otherwise anomalous doubled eyewalls and irregular 

openings of eyewalls often associated with catastrophicly damaging downbursts at the surface, as 

noted with references in the first paper of this series (Howard 2006).  These correlations and 
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implications indicate a potentially valuable opportunity and approach for several intensified field 

and laboratory research efforts toward more precise and thorough understanding of the most 

violent weather vortex forces at all levels of the atmosphere.     

 These weather correlations and implications are made possible by laboratory 

measurements of vortex forces with a wide selection of combinations of the numbers of variables 

that control forces of single and dual turbulent conic gyres.  First generation empirical equations 

are derived which numericly define these multivariate forces and their scaling parameters, as 

well as describing a newly found and significant PT force exhibited by single conic vortices 

generally.  Major elements of turbulent conic vortex flow structure, vortex power levels, and 

vortex energy storage are included.  There are new implications to turbulent boundary layers. 
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 Turbulent conic lab vortices scale to wide ranges of violent natural actions 
2.  3D GYRE FORCES CONTROL TORNADOES, SUPERCELL MESOSPHERES, CYCLONE EYEWALLS 
Fred E. Howard, Jr.   
 
 
    FIGURE   CAPTIONS 
 
 
Figure 1a.  The measured data and derived equation (1) for the highly turbulent gyre diameter (GD in Fig. 1b), in 

centimeters for conic water vortices (centrally driven by 30° and smaller 20° cones), versus the peripheral velocity 

in cm s−1 of the base of each cone at various drive gear ratios from an electric motor (which was overloaded by the 

larger cones from the 2X to the 4X gear ratio.  Gear ratios other than 1X direct also have losses in an added two-gear 

train.)  The GD is the scaling parameter for subsequent force effects.  The three point crossed line in the 30° cone's 

plot with 2X drive gear ratio is for a 4:1 variation of water viscosity with heat and sucrose sugar solution.   

 

Figure 1b.  Schematic planform and partial vertical section of a highly turbulent surface hemivortex driven by a 30° 

cone at 1X direct drive with a cone peripheral velocity of 872.9 cm s−1.  The cone is in left hand rotation at its base, 

which is at a standardized one diameter depth.  The subplanar (slightly conic) disk of the centrifugal spiral wave 

planform, and each spiral wave in the disk, grow in turbulent thickness out to the GD and subside beyond it into 

smooth outward waves, with water particle currents indicated by arrows.  For simplicity, only the cores of spiral 

waves are sketched, but the complete waves fill the intervening spaces.  In the side elevation view, water from the 

surrounding surface tumbles in to the center over the top of the spiral wave disk and down to the top of the cone to 

feed the centrifugal outflow from above.  Below the 14 degree elevated bottom of the spiral disk, water spirals more 

smoothly up and out from the sides of the cone, while also feeding the top of a toroidal gyre around the cone's body.   

 

Figure 2.  Electric drive power and stored energy of the same water vortices as in Figs. 1a and b are directly 

proportional to the dotted curve for ratios to a fixed reference of similar volumes of water within the GD diameter. 

 
Figure 3.  Measured data and derived equation (2) for axially directed point thrust (PT) of single conic vortices as a 

function of peripheral velocity of the two types of drive cones in water.  Subtraction of components of this force 

from total measured force between a pair of conic vortices is an essential correction for mutual radial force between 

the gyres.  This newly demonstrated PT force, inherent in all conic vortices, now accounts for the descent to the 

earth against storm updrafts of the conic body of a tornado.  (Note the same velocity scales as with GD.) 
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Figure 4a. Definition of the relative axial angles of vortical drive cones which are varied symmetricly.  Axes rotated 

with points of cones inwardly opposed (PI) are at positive relative axial angles.  Axes with bases inwardly opposed 

(BI) are at negative angles. 

 

Figure 4b.  Schematic view in the reference plane of the axes of two immersed, sphericly complete, symmetricly 

arranged conic vortices (reduced from the first note of the series, Howard 2006).  The gyres are scaled for 30 degree 

cones driven at 1X direct ratio with +30 degrees relative axial angles and cone volume centroid separations of 2 GD.  

Only cross-section outlines of the major secondary flows are shown, i. e., the spiral wave disk (including the GD) 

and the two unlike toroids in the upper and lower hemispheres.  The irregular side profiles account for abrupt 

changes of mutual forces with relative axial angle or GD scaled separation, which can be significant factors with 

helicopter and low level aircraft wing vortices, microbursts, tornado intensification, and other weather situations. 

 

Figure 4c.  Introductory samples of the variation (with radial separation of cone volume centroids) of radial mutual 

force FM between two turbulent surface vortices, with vertical axes at zero degrees relative axial angle (and 13 

degrees), electrically driven in either co-rotation sense or contra-rotation at 1X direct drive gear ratio by two 30 

degree cones in the curves to the left, or by two smaller 20 degree cones in curves to the right.  There is a common 

scale in GD units of separation for the two cone sizes, plus separate cm scales and grams force scales.  Note the 

reversed double arrows for abruptly unstable force changes in both direction and amplitude.  See text for details. 

 

Figure 4d.  These two curves from one equation (15a) show the general mean trend of empirical data herein on the 

isolated radial mutual force between symmetric gyres versus radial separation on the turbulent GD scale over the full 

range of variable conditions in the prior figures and sections 2, 3, 5, and 7.  Note that the radial mutual force 

between co-rotating symmetric conic gyres typically reverses direction from repulsion to attraction as separation is 

reduced in the vicinity of 3/4 of the common GD, with variations.  The basic coefficient equation (15a) is always 

adapted for use in the force equation (4) by modification for specific conditions.  Equations (5-14) multiply these 

two curves vertically.  Equations (15b-24 and 10b) modify the curves horizontally.  See text. 

 

Figure 5a and b.  These simple equations, for adaptation of force coefficients to contra-rotating pairs of symmetric 
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gyres, are controlled by a lengthy series, contained in the text on equation (5), which gives the curves their peculiar 

shape to adapt the equations to sharp changes in forces when major features of the gyres (Fig. 4b) are exactly 

aligned.  (The ripples in the horizontal lines may be disregarded as unimportant consequences of curtailing the 

length of the series to the minimum required in view of the experimental uncertainties.) 

 

Figure 5c.  The simple general equation (7) function of relative axial angles between certain co-rotating pairs of 

gyres.  It is also widely modified in a variety of changes for other adaptations of the radial mutual force equation 

under the substitution rules of Table 1. 

 

Figure 5d. Two variations of a major impulsive exponential equation (11) adapting to very large peak repulsive 

forces between co-rotating symmetric surface vortices in the lower range of relative axial angles.  Note that the 

equation (13) for negative relative axial angles with bases inward (BI) is also used for a few cases of positive angles 

with points inward (PI) in the range of about 100 to 150 degrees rather than the low PI curve in that range. 

 

Figure 5e.  The graph of equation (12a) for an adaptive factor for whole cone body angles used in a few conditions 

in the calculation of radial mutual force between symmetric surface vortices.  This factoral coefficient is graphed 

versus the absolute relative axial angles between cones, which is the other principal variable in the equation (12a) as 

a factor in equation (12). 

 

Figure 5f.  The very few definite radial mutual force data versus cone separations from limited comparisons of levels 

of surface roughness in viscously coupled driving of conic vortices with small 20 degree cones.   

 

 Note: Figures 6 & 7 are intended to be shown on facing pages for direct and ready visual 
comparison of the difference between the groups of graphs displayed.  The scales of display 
should be the same, for full page on Fig.7, with the extra space at the bottom of Fig. 6 for the 
short captions on both 6 and 7.  If the captions are too long to fit, they should be reduced in 
length to fit this space, as in alternate captions shown further below. 
 

Figure 6.  (above)  Radial mutual force data in grams, between symmetric pairs of surface hemivortices in lab water, 

and adapted equation curves per Table 1, versus cm separation of centroids of drive cones with points inward at 

positive relative axial angles of 30° cones unless 20° is noted, co-rotating in upper reversibly repelling curves (solid 
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symbol), counter rotating in lower attracting curves (open symbol).  Compare conditions between plots and with 

Figs. 7 and 8.  Note abrupt unstable reversals of forces.  See text and Fig. 8 for details. 

 

Figure 7.  (opposite)  Radial mutual force data and equation curves for immersed pairs of spheric vortices with wider 

variation than in Fig. 6. of drive gear ratios, peripheral velocities of cone bases, symmetric relative axial angles, and 

water viscosities.  See text for details. 

 

Alternate Shorter Caption for Figs. 6 & 7.  (NOTE THAT THE LAST LINE AND A HALF 

MAY BE CUT IF SPACE REQUIRES, since this info is also in other Fig. captions referenced.) 

 

Figures 6 (above) and 7 (opposite).  Compare symmetric pairs of surface and immersed vortices respectively for 

variation in grams of radial mutual force data and equations with centimeters separation of 30 and 20 degree drive 

cones, under varied drive gear ratios, relative axial angles, and water viscosities.  Note abrupt unstable reversals of 

forces.  See text and captions of Figs. 1a, 4a, b, c, d, and 8 for details.  Equations are per Table 1.  Pairs for upper 

curves (solid symbol) are co-rotating; for lower curves, counter rotating.  Positive forces repel; negative forces 

attract.   

 

Figure 8.  Empirical radial mutual force FM data and equations (per Table 1) for symmetric pairs of fully immersed 

conic vortices (and a few surface cases) driven in water near the lab standard by 30° cones at negative relative axial 

angles (α), i. e., with cone bases inward BI and opposed (per Fig. 4a) rather than points inward PI (Figs. 6 and 7).  

Drive gear ratios (1X, etc.) and consequent cone peripheral velocities (VP) are widely varied.  Data are graphed in 

grams force versus centimeters (with the GD indicated) of radial separation of volume centroids (CV) of the driving 

cones.  Negative forces attract or move the two cone CVs closer together.  Positive forces repel or increase the initial 

separation of the two cones.  Pairs of gyres for upper curves (solid symbol) are co-rotating or in the same hand of 

rotation on the bases of the right circular cones; pairs for lower curves (open symbol) are counter rotating.  Double 

and triple down arrows at minimum separations of the internal CVs of the cones indicate that the cones (or parts of 

the pendulum mounting gear) have been attracted together (hit and stick together) so forcefully that the total force is 

greater than can be measured by the pendulum deflection.  Reversed arrows between two points indicate abruptly 

unstable changes of direction and amount of force.  Such abrupt reversals of force direction correlate directly with 
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hazardous uncertainties of weather/forecasting that bear on safety of flight, surface damage, etc. See text.   See Fig. 

9a for same 30 degree data scales in larger size. 

 

Figure 9a.  Crawl-corrected data on fully immersed mutual forces in grams FP perpendicular to radial mutual forces 

FM and in the reference plane of symmetric cone axes, versus centimeters of CV separation of the pair of drive 

cones.  Compare with Figs. 6, 7, and 8.  The counter rotating pairs lock in the initial coaxial alignment, and their 

considerable attractive (negative) force toward coax alignment could not be readily measured.  As in all other 

figures, reversed arrows indicate an unstably abrupt reversal or change forces.  Also note especially the contrast in 

peak values of force with the 150° to 180° data of radial force trends in Figs. 6, 7, and 8 at the same drive gear ratios 

and consequent VP, and see the text discussion.   Again, these effects indicate uncertainties about vortices involved 

in tornadoes and other weather phenomena.  

 

Figure 9b.  Some samples of sums in grams force versus cm separation of gyres for non-mutual crawl and mutual 

lateral force, both perpendicular to the vertical reference plane of the two cone axes, in water surface vortices when 

guides to eliminate these lateral pendulum deflections were removed briefly.  Some instabilities are noted by the 

reversed arrows.  Counter rotating gyres tend to maintain coaxial alignment of axes in plan projection with some 

unmeasured negative force greater than zero, with two distinct exceptions. 

  

Figure 9c.  Lateral crawl forces in grams in the horizontal plane of the immersed pendulum rig versus the peripheral 

velocity in cm/sec (and drive gear ratios) of a single 30 degree whole angle cone with two gears in the drive train.  

These data are used for correction of mutual forces between pairs of cones where noted.  See text for discussion. 

 

Figure 10.  A small sampling of the much greater scope of forces between asymmetric pairs of gyres which might be 

investigated by any additional experiments.  The asymmetric cases often are not consistent with the trend of 

symmetric experiments in the prior graphs.  The angles listed in the subfigure titles are pivoted around the dots 

which indicate the centroids of the volumes of the cones which drive these conic vortices.  The very high attractive 

force in counter rotation at small separation of the top configuration in Fig. 10c (consistently here with Figs. 8g and 

i) correlates with variations of eyewall structure in tropical cyclones and upper level disturbances over storm 

supercells.  (See sections 6b and 9.) 


